
METHODOLOGY OF THE LEGACY SOFTWARE PORTING

Jurij, Agalakov
FSUE ”SRIAE” 1

Moscow, Russia

Konstantin, Kotov
FSUE ”SRIAE” 1

Moscow, Russia

German, Oganyan
FSUE ”SRIAE” 1

Moscow, Russia

ABSTRACT
In the report is presented the methodology of the legacy soft-
ware porting which main aspect is the formal verification of
the legacy software for the conformance to the standards
profile of the application platform. This methodology is ap-
plicable to the wide range of the problems frequently comes
in practice work and permits well to automates the process
of the porting and guarantee his correctness. As a method
of the formal verification is proposed to use the method of
the bounded model checking added with the technology of
the software contracts.

Keywords
porting, legacy software, formal verification, bounded model
checking, software contracts

1. INTRODUCTION
Todays situation in the domain of the information technolo-
gies is characterized by use of the hardware setting on the
base of different processors architectures systems as IBM,
Sun, Intel and others. The processors architectures are in
process of continuous development and perfection. Recently
especially intensively develops the technologies of support of
the parallel calculations.

As result of stated tendency is that independently of the do-
main of application of the information systems more often
appears the task for the replacement and modernization of
the hardware which its included. And it, in course, leads to
the necessity of the porting on the new platforms of the all
range of software of these information systems. Software for
which is posed the problem of porting will be named legacy.
The problem of porting appears both for the middleware and
for the application software. In his place systems software
in the most of cases strongly dependant of the hardware,
easier to develop anew or to change completely, while the
redevelopment of all a quantity of application software and
middleware for the new platform isnt often efficient which
is connected both with the large volume of application soft-
ware and that the dependence of the application software
and middleware on the platform well less that of systems
software.

2. STATEMENT OF A PROBLEM OF THE
PORTING

To pose exactly the problem of the porting we will examine
the Open System Environment Reference Model (OSE RM)

1Federal State Unitary Enterprise ”Scientific Research In-
stitute of Automatic Equipment”

[1] which includes 3 basic entities: application software enti-
ties, application platform entities and external environment
entities. Application platform realizes the set of services for
which through the corresponding application programming
interface (API) call the application software. The set of ser-
vices of the OSE RM includes the system services, commu-
nication services, information services and human-computer
services. Under external environment is realized the set of
the external for the application platform entities with which
interaction accomplish also through some set of services.

Within the framework of a viewed model under the problem
of legacy software porting we will realize the problem of the
ensuring of executing of the legacy software in the context
of the new application platform and new environment. The
platform for which the software was developed first we will
determine as a source platform, but the platform on which
software should be transferred as a target platform [2].

According to the main subject of the porting mark out its
following forms:

• source porting;
• binary porting.

Then under the porting we will realize in general the source
porting.

The object of legacy software porting can be determined
generally by the one of two methods:

• method of emulation when on the target platform are im-
plemented failing services which have the same interface like
on the source platform;
• method of adaptation when the source code of the soft-
ware unit is modified with the object of the proper use the
interfaces of target platforms services.

In view of this the software adaptation is possible only in
case if the source or target platform conforms to the same
standards profile. Otherwise its necessary, based on the re-
quirements of software, either redevelopment it, or emulate
completely the source platform on the target platform.

At the moment are presented the highly developed standards
which provide the software portability between the wide set
of platforms. The largest expansion received the POSIX
(Portable Operating System Interface) standard in which is
described the interface of system calls and C library func-
tions, as well the utility programs and the possibilities of
command interpreter. POSIX supports applications porta-
bility at the source code level that demand the recompiling
it on the new platform. More and more popularity comes
to the LSB (Linux Standard Base) standard. This standard

1



in difference with POSIX at the some cases provide the ap-
plications portability on the level of binary code. POSIX
as LSB standard develop sufficiently dynamic: the latest
version of these standards relates to 2008 years.

So, because of the everywhere use of the standards on the
application platform services, the largest interest presents
the examination in particular of those cases when the port-
ing of software realizes between the platforms which conform
to the same standards profile. In this case the main problem
to solve by the porting is the problem of the verification of
the legacy software for the conformance of the standards of
the application platform. Under the verification generally is
realized the examination of the conformance of some created
during development and maintenance of software artifacts to
another which were created earlier or used as source data,
and also the conformance of those artifacts and processes
of theirs development for the principles and standards [3].
If by the verification will be determine the discrepancy of
the porting software to the standards profile, the methods
of verification should fix those fragments of the source code
of software, which adaptation will permit to attain this con-
formance.

Recently during the software development more dissemina-
tion gets the formal methods of verification. During the
verification by the formal methods is realized the compari-
son between the formal model of tested properties of artifact
and of the formal model of the artifact itself. The model of
the tested properties is accepted to term specification, and
the model of the tested artifact as implementation [3].

The formal verification as compared with the methods of dy-
namic verification and the examination of the source code
usually used by the porting permit well to automates the
process of verification and to guarantee the conformance
between the implementation and the specification. Accord-
ingly is presented well-grounded to use the formal methods
for the software verification by its porting.

3. SOFTWARE VERIFICATION FOR THE
CONFORMANCE TO THE STANDARDS
PROFILE

After tested the methods of the formal verification, it was
achieved that for the solution of the portings problem the
method of the model checking is more suitable [4]. This
method in contradistinction to the other methods permits
to fully automate the process of verification and in case of in-
consistency between implementation and specification allow
displaying exactly the sequence of the steps of the programs
algorithm which may result to the breach of specification.
The temporal logic is used in the method for the description
of the checking properties and like a model, which proper-
ties is tested, the Kripke structure which is a variety of the
finite automate [4].

The main problem concerned with an application of model
checking is the exponential increase of the number of the
Kripke structures states during the extension of the verifi-
cation programs complication state explosion problem. So
because in the report is proposed to use during the porting
process the modified method of the model checking method
of the bounded model checking (BMC) [5], as its sufficiently
effective even in cases of the large number of models states
and comes well for verification just of that class of require-
ments to the software which appear most often by the port-
ing [6].

Bounded model checking is based on the solution of the
boolean satisfiability problem (SAT problem) [7]. It means
transformation of program model and the specification to
propositional logic formula which is checked on satisfiabil-
ity. The process of construction of the program model in
BMC is iterated and is carried out until the resulting model
does not become relevant to the initial program [5].

Despite doubtless advantages of the BMC method, its ap-
plication at the legacy software verification is interfaced to
following difficulties:

• the method does not support procedures and functions of
programming languages that leads to excessive complexity
of verified programs models;
• necessity of construction not only program and specifica-
tion model, but also environment model;
• necessity of the description is direct in the source code the
specification of program.

For overcoming of these difficulties is offered to add a method
of verification with the technology of program contracts [8].
The program contract represents the description of functions
prototypes, structures of their conditions, and also precon-
ditions and postconditions for each function. The set of all
preconditions is treated as the program specification while
postconditions set model of a program environment. For
use of program contracts at verification is necessary to ex-
pand program model logic into logic of the uninterpreted
functions possessing property of congruence [7]. Thus it is
necessary to notice that programming language functions
generally do not possess of the congruences property and
therefore at modeling is required to transform function calls
in appropriate way. Introduction in language of logic of
uninterpreted functions essentially does not complicate the
algorithm of verification as from the language of logic with
uninterpreted functions is possible to pass always by means
of enough simple transformation to equality logic, having
kept thus property of satisfiability of formulas in these lan-
guages [7].

As the functions are completely defined by the prototypes,
at construction of models is possible to compare automati-
cally to each function call of its preconditions and postcon-
ditions. Thereby necessity for modification of a source code
of porting software disappears.

As to implementation of method BMC is necessary to no-
tice that existing software of verification on the basis of the
given method use the built in tools of lexing and parsing of
a source code. Thereby the given software enough difficult
give in to the integration with widely used in practice de-
velopment environments and support only limited number
of programming languages.

It is represented optimum the approach at which the anal-
ysis of a source code is carried out by means of compiler,
and the result of this analysis - an abstract syntax tree is
represented, is transferred to the verification tools built in
the compiler which actually on the basis of a syntax tree
generate a resulting propositional logic formula and further
transfer it to tools of check of its satisfiability.

4. APPROBATION OF METHODOLOGY
The methodology of the legacy software porting resulted in
article has been approved at carrying over of the following,
written in C and C++ programming languages, middleware
and application software on perspective hardware-software

2



platforms of the Russian working out:

• failure-safe multiple computer complex software, providing
performance of computational process in a duplication mode
on the three units of computer complex with synchronisa-
tion of results between the core and subordinated computing
units and with use of the third computing unit as a hot re-
serve;
• technological processes management software of enterprise
level, proceeding in a real time.

At porting was revealed the incomplete conformity to POSIX
of legacy software, in particular the incorrect call a functions
of input-output multiplexing. Input-utput multiplexing is
used as in the failure-safe multiple computer complex soft-
ware for the interaction organisation on a network of the
program components distributed on three computing units,
and in technological processes management software for data
exchange between client and server components given soft-
ware. Implementation of multiplexing, both on source, and
on target platforms, is provided with function entering into
POSIX select. The problem consisted that on a source
platform value of the maximum time-out of input-output op-
erations, are given to the function select, does not change
after function execution, and that time as on a target plat-
form this value decreases. And as legacy software has been
written in the assumption of an invariance of a time-out
that contradicts POSIX at its start on a target platform
astable work of software was observed. Thus it was repre-
sented defensible to use formal verification for revealing of
those fragments of a source code in which the call a function
select was incorrect.

For software verification, according to the technology of pro-
gram contracts stated above, on the basis of the text of
POSIX, was developed the specification of function select

and environment model which is defined by this function.
The specification and environment model were set by fol-
lowing logic formulas for precondition P and postcondition
R of function select:

P :=

(n > 0) ∧ (t0 ≥ 0) ∧

∀n, set, t, S. ¬t0 = select
(2)(n, set, t, S)

(1)

R :=

r = select
(0)(n, set0, t0, S) ∧

set1 = select
(1)(n, set0, t0, S) ∧

t1 = select
(2)(n, set0, t0, S) ∧

r ≥ −1 ∧

r = −1 ⇒ (set1 = set0) ∧

r > −1 ⇒ (
X

i

set1[i] = r) ∧

t1 ≥ 0 ∧ t1 ≤ t0

(2)

, where n — the maximum number of descriptor, i.e. the
identifier of an input-output device;
r — the returned value characterising result of function ex-
ecution;
set0, set1 — given to and returned by function list (a bit
array) descriptors;
t0, t1 — given to and returned by function time-out value;
S — the set of conditions, not presented to the prototype,
influencing result of function execution;
select(0), select(1), select(2) — the functions calculating re-

turned value r, the list of descriptors and the time-out value
accordingly.

Further, by support of the instrumental tools of the verifi-
cation implemented a method of bounded model checking,
for each legacy software unit on the basis of its source code
and a postcondition (2) the model of the given unit M has
automatically been constructed. The algorithm of models
construction was taken from [9]. The model M represents
the formula over the bit vectors and uninterpreted functions
united with the specification, i.e. with the formula of a pre-
condition (1), in a resulting formula of a following kind [5]:

M ∧ ¬P (3)

After formula (3) transformation in the equivalent formula
of propositional logic for resulting formula the SAT problem
solved. The satisfiability of the formula testified that the
software unit described by model M , does not correspond
to specification P and for the successful porting requires
adaptation. In this case the source code of the software unit
was modified and repeatedly passed verification process. In
a situation of an unsatisfiability of the formula (3) it was
guaranteed that the problem of incorrect use of multiplexing
function, in the software unit, is absent.

Similarly, the verification process resulted above was carried
out and for all other POSIX functions the using which of the
legacy software units didnt conform to the standard.

5. CONCLUSION
Summing up it is possible to allocate following high lights
of offered methodology of the legacy software porting:

• at porting it is necessary to use formal verification of the
legacy software for the conformance to the standards profile
of the application platform;
• as the basic method of verification in the porting process
the use of a method of bounded model checking, added with
the technology of the software contracts, is justified;
• it is expedient to integrate verification tools in widely used
development environments, in particular, into compilers.

The approbation of the methodology of porting on a wide
range of software has shown that the formal verification
methods essentially reduce the laboriousness of the porting
process and provide high degree of reliability of software on
target platform.

REFERENCES
[1] ISO/IEC TR 14252:1996. Information technology -

Guide to the POSIX Open System Environment (OSE).

[2] James D. Mooney. Developing portable software. In
IFIP Congress Tutorials, pages 55–84, 2004.

[3] Kuliamin Victor. Methods of software verification.
Technical report, Institute for System Programming,
Russian Academy of Sciences, 2007.

[4] Edmund M. Clarke, Orna Grumberg, and Doron A.
Peled. Model checking. MIT Press, 2000.

[5] Armin Biere, Alessandro Cimatti, Edmund M. Clarke,
Ofer Strichman, and Yunshan Zhu. Bounded model
checking. Advances in Computers, 58:118–149, 2003.

[6] Vijay D’Silva, Daniel Kroening, and Georg
Weissenbacher. A survey of automated techniques for
formal software verification. IEEE Trans. on CAD of
Integrated Circuits and Systems, 27(7):1165–1178, 2008.

3



[7] Daniel Kroening and Ofer Strichman. Decision
Procedures: An Algorithmic Point of View. Springer
Publishing Company, Incorporated, 2008.

[8] Bertrand Meyer. Applying ”design by contract”. IEEE
Computer, 25(10):40–51, 1992.

[9] Edmund M. Clarke, Daniel Kroening, and Karen Yorav.
Behavioral consistency of c and verilog programs using
bounded model checking. In DAC, pages 368–371, 2003.

4


