Algorithm visualization in CS education

Ludeék, Kucera
Charles University
Prague, Czech Republic
ludek@kam.mff.cuni.cz

CSIT Conference

24-28 September 2009
Yerevan, Armenia

Abstract

Algorithm visualization is a useful tool in teaching computer science. Ex-
isting algorithm visualization systems are well designed and sophisticated,
when viewed as software products. However, they are often unsatisfactory
from the point of view of cognition theory. The aim of the present paper is
to argue that the visual information should be structured in a proper way to
make the “cognitive complexity” of visualization as low as possible.

Moreover, a succesful product must not be a simple animation, but a
complex environment that makes it possible to show not only the algorithm,
but its variations as well. It should also be possible to explain motivation,
applications, and make a student an active participant of the teaching process.

The abstract approach is illustrated on the algorithm visualization system
Algovision, developped at the Charles University, Prague.

Keyvords: Algorithm visualization, algorithm animation, CS education

1 Introduction

With an advent of visual programming languages and systems in 90’s (and
to some extent even in 80’s) early attempts to use algorithm visualization
in teaching appeared accompanied with great hopes that this concept would
revolutionize CS courses in universities. It seemed that a dynamic character
of visualization using, e.g., Java or other visual languages, matched perfectly
with temporal aspects of algorithms. Unfortunately, these hopes did not ma-
terialize and after almost two decades the algorithm visualization is, in the
best case, an auxiliary tool that is used as an illustration of what was taught
using classical methods.



The aim of the paper is to analyze why the algorithm visualization is
still less successful than originally expected and to suggest an approach that
could improve the present situation at least in certain aspects. The approach
is illustrated on an algorithm visualization system Algovision, developped at
the Charles University.

2 Algorithm visualization

There are numerous systems for algorithm visualization that are used in Com-
puter Science education: let us mention, e.g., Algoviz [18], Alvie [2, 7], An-
imal [3, 17], JAWAA [11, 16], JHAVE [12, 14], Leonardo [4, 5], Mavis [13],
Trakla [19, 15] (in alphabetic order). All of them are based on the following
paradigm of creating a visualization:

e A method of (static) visual representation of data used by an algorithm
is chosen. It is most common that a method that is used in textbooks
and journal articles is selected. E.g., if an algorithm operates on graphs
or networks, nodes of a graph are represented by circles, edges are shown
as arcs connecting their end nodes, and the state of a node or an edge
can be indicated using colors or special shapes.

e In order to visualize the computation of the algorithm, at each step
of the computation a representation of data is updated to reflect data
changes. E.g., in the case of a graph algorithm, state-representing colors
of nodes and edges change in time and sometimes new nodes appear or
existing nodes are deleted, but otherwise the graph remains unchanged.

e Some systems also present a simplified code or a pseudocode of the
algorithm and show the control flow that corresponds to the changing
visualized data.

Experience in teaching algorithm courses leads the author of the present
paper to a conclusion that such a visualization brings at the same time too
much and too little information to a student. Let us explain the statement
at an example of an algorithm that is taught in almost any Algorithm and
Data Structure course and hence it is visualized in practically any algorithm
visualization system - the Dijkstra’s shortest path algorithm [8, 6]:

e Why a typical visualization offers too much information: it would be
more precise to say that too much information is put to the foreground, i.e.,
there is too much information that a learner has to follow in order to under-
stand the visualization. A graph might look as shown in Fig. 1, where all
nodes look similar and are placed randomly in the plane. The key step of
the algorithm is to select a node for processing among nodes that have been
reached, but not yet processed. In a typical visualization (e.g., in the systems
cited above), the only way for a student to select the proper node is to read
numerical information associated with nodes. In this way we are loosing all



inf

5 inf

Cinf

Figure 1: Static Dijkstra’s algorithm

advantages of visualization, because, from the point of view of cognition, read-
ing numbers is a completely different and much slower process than observing
(moving) pictures.

Thus, even though a visualization offers full information about the compu-
tation, the “full information” is unstructured, and psychological experiments
revealed that students are not able to distinguish a selection of nodes for
processing made by Dijkstra’s algorithm from a random order, unless they se-
quentionally read the numeric information. This is amplified by the fact that
there is no correlation between a position of a node in the display window and
the distance estimation, which is the variable used by the algorithm to select
the next node for processing.

When looking as random, the animation doesn’t help a student to un-
derstand the computation, and this is what strictly limits usefulness of this
kind of algorithm visualization. It is even difficult for someone who already
understands the algorithm to understand the visualization. The next section
describes one possible way how to cope with this problem.

e Why a typical visualization offers too little information: there is a lot of
information that is closely connected with a problem and the corresponding
algorithm that should be conveyed to students, but is outside of the frame
of standard visualization described above. Let us mention motivation for the
problem, which goes hand-by-hand with possible applications; programming
details and paradigms; complexity issues and, more generally, termination
analysis of the algorithm; an algorithm correctness proof; a relation to similar
problems, and many others. This is what we mean by saying that too little
information is brought to students by a standard visualization. The section
on visualization environments deals with this problem in detail.

3 Structured visualization

As it has already been mentioned in the introduction, visual information pre-
sented by a standard algorithm visualization is often unstructured and it is
difficult to distinguish a sequence of color, shape and position changes gener-
ated by a computation from a random sequence of visual parameter changes.

Nevertheless, the sequence of changes generated by an algorithm is actu-



ally far from being random, as there is a simple mechanism that directs the
changes.

This reminds the notion of Kolmogorov complexity of a sequence, which,
roughly speaking, is given by the size of the shortest program that generates
the sequence. In our case the algorithm itself is a witness of low complexity
of the sequence of visual events.

However, the main problem in designing educational visualizations is in
the field of cognition, not in mathematics or computer science, namely how
much mental effort is needed to recognize that the complexity of the sequence
of visual events is low. In other words, how much mental effort is necessary
to be able to predict the next event after having seen several training se-
quences (which is essentially the same as understanding what is going on in
the visualization).

Unsatisfiable results with many standard algorithm visualizations are due
to our failure to present the visual information in such a way that the cognitive
complexity of recognizing logical simplicity of the visual event sequence is
minimized.

It is not easy to find an appropriate visualization method. As mentioned
above when speaking about the example of Dijkstra’s algorithm, using a static
drawing of a graph, where only colors representing states could change and
the values of the distance estimation are given numerically, gives an animation
that looks random, i.e., it is very difficult to realize that a visual event sequence
is logically simple.

A (pseudo)code of the algorithm with indication of execution control, if
displayed and possibly linked in a certain way with the visualization, proves
low complexity of a visual sequence, but the cognitive complexity of the proof
is again too large. In fact, a pseudocode is also a written information, which
requires reading, and, once again, we are loosing advantages of fast processing
of visual information.

Our approach is based on another way of demonstrating a low complexity
of a visual sequence, which is an algorithm invariant.

An algorithm invariant is usually used to prove algorithm correctness and
termination. An invariant is a logical formula that remains fulfilled (i.e., in-
variant) during the whole computation and, together with a terminatin condi-
tion, implies the required property of the output (e.g., in the case of Dijkstra’s
algorithm, the property of being a description of the shortest path from the
origin to the destination node). There is a well developped formal theory
that studies a use of invariants in correctness proving. However, almost no
research has been done to study the cognitive role of invariants.

We strongly believe that knowledge of an invariant is very close to under-
standing of the algorithm. The main problem in formal algorithm correctness
proving is to find an invariant of a given algorithm. It is known that in gen-
eral this problem is algorithmically unsolvable, and a metarule of the field says
that the only method known at the moment is to understand the algorithm
and to write down all logical restrictions of the data that follow.

If we go back to the example of Dijkstra’s algorithm, the algorithm divides



graph nodes to three categories - processed, reached and unreached. The
first set of invariants says that the shortest path length estimation (that is
maintained by the algorithm for every node) is smallest for processed nodes,
larger for reached (but unprocessed) nodes, and equal to infinity for unreached
nodes.

The first invariant set can easily be visualized with very low cognitive com-
plexity. Nodes are shown sliding along horizontal lines and their x-coordinate
is proportional to the shortest path estimation maintained by the algorithm.
In order to visualize the invariant, see Fig. 2, the window is divided into
three stripes, and the left one (dark) contains processed nodes, the middle
one (lighter) contains reached nodes, and the right one (light) is a container
for yet unreached nodes with an infinite estimation. The invariant claim is
that nodes could be partitioned in this way:.

Figure 2: Dynamic Dijkstra’s algorithm

This visual representation also clearly identifies the next node for process-
ing by the algorithm - the leftmost node in the middle stripe - which makes
the visual event sequence easily predictable. Relaxing an edge now appears
as attracting a node by the node that is being processed.

The second set of invariants, the one that immediately implies correctness
of the algorithm, says that the shortest path length estimation for a given
node is the length of the shortest path to the node that passes through the
processed nodes only. Again this invariant can be visualized by displaying such
paths - see Fig. 2. where such paths are composed of wide arrows oriented
to the left. The visualization immediately suggests in a purely graphical way
not only how the computation continues (i.e., what is the sequence of visual
event), but also why the algorithm finds the shortest paths.

The reason why the present paper illustrates the algorithm invariant ap-
proach using an example, and doesn’t define it in a general way, is that the
visualization that makes cognitive complexity of inferring future moves of the
algorithm low is quite different for different algorithms, even when the algo-
rithms are formally very similar. This is one of the main lessons we have
learnt from Algovision: there is no general and uniform method of generat-
ing visualizations of low cognitive complexity, and each problem requires a
visualization tailored to its nature. This also implies that attempts to create
educationally good visualizations automatically are bound to fail.



4 Algorithm visualization environments

Our main goal is to create algorithm visualizations that can be used in a
university course of algorithmics. A simple animation that shows how the data
change during the computation, even if built according principles explained
in the previous section, is not sufficient to reach our goals. Let us list several
other features a good educational visualization should possess:

e It often happens that a certain measure or arrangement highly improves
properties and a behavior of an algorithm. E.g., successful network
flow algorithms (Dinitz [9], Edmonds-Karp [10]) use an augmenting path
with the smallest number of edges. A good teacher should also show
what happens when the successful strategy is not followed, e.g., show
the consequences of using a long augmenting path to the network flow
algorithm time complexity. Therefore, a usefull educational environment
should implement and visualize much larger class of algorithms - not only
the one that is taught, but also all its modifications and variations that
(at least partially) fail, because they do not implement certain important
features.

e Certain problems need no motivation. E.g., any traveler understands
a use of knowledge of the shortest path, and any computer user has
no doubts about usefullness of searching a string in a long text. On
the other hand, some other problems need a very detailed exposition
of the motivation and applications. E.g., an Algovision applet teaching
Fast Fourier Transform algorithm must be preceeded by a quite complex
applet that shows why Discrete Fourier Transform is important, and why
we need a fast way of computation like FFT. In this particular case, our
DFT applet uses a virtual device for the spectral analysis of a periodic
function and the spectral search and compression.

e It is generally recognized that a learner should not be a passive observer
of an educational visualization, but an active participant, especially if
the program is used in the frame of individual and/or distant learning.
This is why a program has to incorporate means for a learner to interact,
e.g., to suggest how certain steps of a computation would be performed.
Such features highly enhance usefullness of a visualization, but they also
highly complicate its implementation.

e Certain correctness and/or complexity proofs are formulated as so called
“adversary argument”. A proof is designed as a game, and Bob wins
when he is able to submit an input that is too difficult for the algorithm,
while Alice (= the algorithm) wins if she solves successfully all Bob’s
inputs. It is conceivable to implement a visualization as a true game
between two human players.

e Certain algorithms are implemented as computational circuits. In such
a case we should not only visualize how the data flows through a circuit,
but also show a step-by-step construction of a circuit that starts as a



“black box”, and another animation shows how the black box evolves to
a fully open circuit.

Even though the list is highly incomplete, it is clear that an educational
visualization of a particular algorithm must be a complex visual environment
that animates the algorithm in question and often a large class of related al-
gorithms, can be used to show motivation and applications of the algorithm,
the history of the algorithm, including animated implementation of its prede-
cessors, etc.

5 Algovision

Algovision is a system for algorithm visualization that has been developped
at Charles University, Prague. Its original aim was supporting a university
course on Algorithms and Data Structures, but it has evolved to a general
tool that covers a wide spectrum of algorithms in the range from standard
data structures including unbalanced and balanced tree data structures and
heaps, basic sorting algorithms, graph algorithms (extremal paths and span-
ning trees, flows in networks), carry look-ahead adder, FFT, convex hull and
Voronoi diagram in the plane, string matching algorithms and the simplex
algorithm of linear programming and other algorithms.

Algovision can be viewed as an illustration and application of the principles
explained in the previous two section, because both of them represent an
important part of the Algovision design philosophy, but in fact the causality
is quite opposite - the principles slowly appeared as the system evolved under
continuous evaluation and testing the applets in practical algorithm teaching.

In some sence it can be said that both direction were dictated by student
acceptance or disapproval of particular applets and design strategies. Many
steps of evolution of Algovision are in fact due to students, not only at Charles
University, but also at many other universities, where the system is used or
was presented.

The lecture delivered at the CSIT’09 conference showed several typical
examples of algorithm visualization brought by Algovision that illustrate well
the above-mentioned principles.

To a non-negligible extent, Algovision is also an armenian product: two
students of Yerevan State University were visiting in Prague for certain time
period and contributed to Algovision development and further co-operation
is planned.

6 Acknowledgement

The Algovision project was partially supported by a development grant of the
Czech Ministry of Education. Youth, and Sports.



References

1] Algovision, http://kam.mff.cuni.cz/ ludek/Algovision

[1]

[2] Alvie, http://www.algoritmica.org/alvie

[3] Animal, http://www.animal.ahrgr.de

[4] V. Bonifaci, C. Demetrescu, I. Finocchi, L. Laura, “Visual editing of an-
imated algorithms: the Leonardo Web builder”, AVI Conference, Venezia,

IT, pp. 476-479, 2006.

[5] V. Bonifaci, C. Demetrescu, I. Finocchi, G. Italiano, L. Laura, “Portraying
Algorithms with Leonardo Web”, WISE Workshops, pp. 73-83, 2005.

[6] T. Cormen, C. Leiserson, R. Rivest, C. Stein, “Introduction to Algo-
rithms”, 2nd Ed. MIT Press and McGraw-Hill, 2001.

[7] P. Crescenzi, C. Nocentini, “Fully integrating algorithm visualization into
a cs2 course: a two-year experience”, ITiCSE, pp. 296-300, 2007.

[8] E. W. Dijkstra, “A note on two problems in connexion with graphs”,
Numerische Mathematik, pp. 269271, 1959.

[9] Y. Dinitz, “Algorithm for solution of a problem of maximum flow in a
network with power estimation”, Soviet Math. Doklady, vol. 11, pp. 1277-
1280, 1970.

[10] J. Edmonds, R. Karp, “Theoretical improvements in algorithmic effi-
ciency for network flow problems”, J. ACM, 19(2), pp. 248-264, 1972.

[11] JAWAA, http://www.cs.duke.edu/csed/jawaa2/

[12] JHAVE, http://jhave.org

[13] I. Koifman, I. Shimshoni, A. Tal, “MAVIS: a multi-level algorithm vi-
sualization system within a collaborative distance learning environment”,

Human Centric Computing Languages and Environments, pp. 216 - 225,
2002.

[14] T. Naps, J. Eagan, L. Norton, “JHAVE - Supporting Algorithm Visual-
ization Engagement”, J. IEEE Computer Graphics and Applications, vol.
25, no. 5, 2005.

[15] J. Nikander, J. Helminen, A. Korhonen, “Experiences on Using
TRAKLA2 to Teach Spatial Data Algorithms”, In: Guido Rssling ed.,

Proceedings of the Fifth Program Visualization Workshop, 2008

[16] W. Pierson, S. Rodger, Web-based Animation of Data Structures Using
JAWAA, Twenty-ninth SIGCSE Technical Symposium on Computer Sci-
ence Education, pp. 267-271, 1998.

[17] G. Rling, “ANIMAL-FARM: An Extensible Framework for Algorithm
Visualization”, VDM Verlag, Saarbrcken, 2008.

[18] C. Shaffer, M. Cooper, S. Edwards, “Algorithm Visualization: A Report
on the State of the Field”, SIGCSE’07, Covington, USA, 2007.

[19] Trakla, http://www.cs.hut.fi/Research/TRAKLA2/



