
Type Inference System of Polymorphic λ-Terms

Ara, Arakelyan
Yerevan State University

Yerevan, Armenia

e-mail: ara arakelyan@yahoo.com

ABSTRACT
In this paper polymorphic lambda terms are considered,
where no type information is provided for the variables. The
aim of this work is to extend the algorithm of typification
[1] of such terms and to prove that this algorithm typifies
such terms in most common way.

Keywords
Type, expansion, skeleton, constraint, term.

1. INTRODUCTION
Types are used in programming languages to analyze pro-
grams without executing them, for purposes such as detect-
ing programming errors earlier, for doing optimizations etc.
In some programming languages no explicit type informa-
tion is provided by the programmer, hence some system of
type inference is required to recover the lost information
and do compile time type checking. One of such type in-
ference systems is well known Hindley/Milner system [2],
used in languages such as Haskell, SML, OCaml etc. Im-
portant property of type systems is property of principal
typings [3, 4], which allows compiler to do compositional
analysis, i.e. analysis of modules without knowledge about
other modules [3, 4]. Unfortunately Hindley/Milner system
doesn’t support property of principal typings [3]. In this pa-
per we consider type inference system called System E [1,
5]. In section 2 extended version of System E is presented,
which adds type constants and term constants to the orig-
inal System E. In section 3 type inference algorithm and
the main theorem of this paper is presented.

2. DEFINITIONS USED AND PREVIOUS
RESULTS

2.1 Definitions used
Let TypeV ariable be a countable set of type variables,
TypeConstant be a finite set of built-in types, Constant
be a countable set of constants, TermV ariable be a count-
able set of term variables and (ExpansionV ariable,�) be a
countable totally ordered set of expansion variables.

Definition 2.1. The set of types Type is defined as follows:
1. ω ∈ Type; 2. If α ∈ TypeV ariable, then α ∈ Type;
3. If s ∈ TypeConstant, then s ∈ Type;
4. If e ∈ ExpansionV ariable, τ ∈ Type, then eτ ∈ Type;
5. If τ1, τ2 ∈ Type, then (τ1 → τ2) ∈ Type, (τ1∩τ2) ∈ Type;
The set of expansions Expansion is defined as follows:
1. ω ∈ Expansion;
2. If σ is a substitution (we will define substitutions later),
then σ ∈ Expansion;
3. If e ∈ ExpansionV ariable, E ∈ Expansion, then
eE ∈ Expansion;
4. If E1, E2 ∈ Expansion, then (E1 ∩ E2) ∈ Expansion;
The set of terms Term is defined as follows:
1. If x ∈ TermV ariable, then x ∈ Term;

2. If c ∈ Constant, then c ∈ Term;
3. If M ∈ Term, x ∈ TermV ariable, then (λx.M) ∈ Term;
4. If M1, M2 ∈ Term, then (M1M2) ∈ Term;
The set of constraints Constraint is defined as follows:
1. ω ∈ Constraint;
2. If τ1, τ2 ∈ Constraint, then (τ1

.
= τ2) ∈ Constraint;

3. If e ∈ ExpansionV ariable, ∆ ∈ Constraint, then
e∆ ∈ Constraint;
4. If ∆1, ∆2 ∈ Constraint, then (∆1 ∩∆2) ∈ Constraint;
The set of skeletons Skeleton is defined as follows:
1. If M ∈ Term, then ωM ∈ Skeleton;
2. If c ∈ Constant, τ ∈ Type, then c:τ ∈ Skeleton;
3. If x ∈ TermV ariable, τ ∈ Type, then x:τ ∈ Skeleton;
4. If x ∈ TermV ariable, Q ∈ Skeleton, then
(λx.Q) ∈ Skeleton;
5. If e ∈ ExpansionV ariable, Q ∈ Skeleton, then
eQ ∈ Skeleton;
6. If Q1, Q2 ∈ Skeleton, then (Q1 ∩Q2) ∈ Skeleton;
7. If Q1, Q2 ∈ Skeleton, τ ∈ Type, then
(Q1Q2)

:τ ∈ Skeleton. We assume that:
1. (T1∩(T2∩T3)) = ((T1∩T2)∩T3); 2. (T1∩T2) = (T2∩T1);
3. (ω ∩ T ) = T ; 4. e(T1 ∩ T2) = (eT1 ∩ eT2); 5. eω = e,
where T1, T2, T3 ∈ Type or T1, T2, T3 ∈ Constraint and
e ∈ ExpansionV ariable.

Definition 2.2. Let τ1, . . . , τn ∈ Type, α1, . . . , αn ∈
TypeV ariable, E1, . . . , Em ∈ Expansion, e1, . . . , em ∈
ExpansionV ariable, n ≥ 0, m ≥ 0. The set of pairs
{α1 := τ1, . . . , αn := τn, e1 := E1, . . . , em := Em} is called a
substitution if the following conditions are satisfied:
1. i 6= j ⇒ αi 6= αj , i, j = 1, . . . , n;
2. i 6= j ⇒ ei 6= ej , i, j = 1, . . . , m.
By ε we will denote empty substitution.

Definition 2.3. Let e1, . . . , en ∈ ExpansionV ariable, n ≥
0. Then e1e2 . . . en is called E-path and is denoted by ~e.

Now let us define order on the set of E-paths.

Definition 2.4. Let ~e1 = e1e2 . . . en and ~e2 = e′1e
′
2 . . . e′m,

where n, m ≥ 0. If ∃i s.t. 1 ≤ i ≤ min(n, m) and ej = e′j
∀j = 1, . . . , i−1 and ei ≺ e′i(ei � e′i), then e1 � e2(e1 � e2).
Else if n ≤ m, then e1 � e2, else e1 � e2. It is easy to see
that the set of E-paths with order � is a totally ordered set.

Definition 2.5. A constraint ∆ is singular, if it is con-
structed without using operation ∩.

Remark 2.1. Taking into account definition of constraints,
it is easy to see that each constraint is one of the following
forms: ∆ = ~e1(τ

1
1

.
= τ1

2 )∩ . . .∩~en(τn
1

.
= τn

2 ) n ≥ 1 or ∆ = ω,
i.e. each constraint is an intersection of zero or more sin-
gular constraints. Let us introduce the following notation:
E-Path(~e(τ1

.
= τ2)) = ~e.

Definition 2.6. The constraint ∆ is solved, iff it is of the
form ∆ = ~e1(τ1

.
= τ1) ∩ . . . ∩ ~en(τn

.
= τn) n ≥ 1 or ∆ = ω.

The unsolved part of ∆, written unsolved(∆), is the small-
est part of a ∆ such that ∆ = unsolved(∆) ∩∆′ and ∆′ is

1

gayane
Typewritten Text

gayane
Typewritten Text

gayane
Typewritten Text

gayane
Typewritten Text



solved. Consequently ∆′ will be the greatest solved part of a
∆, which is called solved part of a constraint ∆ and is writ-
ten solved(∆). So each constraint is an intersection of its
solved and unsolved parts: ∆ = unsolved(∆) ∩ solved(∆).

As we will see later, the Skeleton is an object, which contains
all information about type inference tree of some term. We
can calculate the term corresponding to the Skeleton using
the following function.

Definition 2.7. The function term : Skeleton → Term is
defined as follows:
1. term(ωM ) = M ; 2. term(c:τ ) = c; 3. term(x:τ ) = x;
4. term(eQ) = term(Q); 5. term((λx.Q)) = (λx.term(Q));
6. term((Q1Q2)

:τ ) = (term(Q1)term(Q2));
7. If term(Q1) = term(Q2), then term((Q1 ∩Q2)) =
term(Q1), else term((Q1 ∩Q2)) is undefined.

Definition 2.8. The skeleton Q is well formed, iff term(Q)
is defined, i.e. the corresponding term of the skeleton exists.

Convention 2.1. Henceforth only well formed skeletons
are considered.

The following two definitions define the application of ex-
pansions to types, constraints, expansions and skeletons.

Definition 2.9. Let X ∈ Type∪Constraint∪Expansion∪
Skeleton and σ is a substitution. Then the application of σ
to X is denoted by [σ]X and is obtained from σ and X by
the following rules:
1. If α := τ ∈ σ, then [σ]α = τ ;
2. If α := τ /∈ σ ∀τ ∈ Type, then [σ]α = α;
3. [σ]s = s; 4. If e := E ∈ σ, then [σ]eY = [E]Y ;
5. If e := E /∈ σ ∀E ∈ Expansion, then [σ]eY = eY ;
6. [σ]ω = ω; 7. [σ](τ1 → τ2) = ([σ]τ1 → [σ]τ2);
8. [σ](X1 ∩X2) = ([σ]X1 ∩ [σ]X2);
9. [σ]{α1 := τ1, . . . , αn := τn, e1 := E1, . . . , em := Em} =
{α1 := [σ]τ1, . . . , αn := [σ]τn, e1 := [σ]E1, . . . , em := [σ]Em}
∪{α := τ |α /∈ {α1, . . . , αn} and α := τ ∈ σ} ∪ {e := E|e /∈
{e1, . . . , em} and e := E ∈ σ};
10. [σ](τ1

.
= τ2) = ([σ]τ1

.
= [σ]τ2) 11. [σ]ωM = ωM ;

12. [σ]x:τ = x:[σ]τ ; 13. [σ](λx.Q) = (λx.[σ]Q);

14. [σ]c:τ = c:[σ]τ ; 15. [σ](Q1Q2)
:τ = ([σ]Q1[σ]Q2)

:[σ]τ ,
where α1, . . . , αn, α ∈ TypeV ariable, c ∈ Constant,
e1, . . . , em, e ∈ ExpansionV ariable, s ∈ TypeConstant,
E1, . . . , Em, E ∈ Expansion, τ1, . . . , τn, τ, τ1, τ2 ∈ Type,
Y, X1, X2 ∈ Type ∪ Constraint ∪ Expansion ∪ Skeleton,
Q, Q1, Q2 ∈ Skeleton, M ∈ Term, n, m ≥ 0 and [E]Y will
be defined by the next definition.

Definition 2.10. Let X ∈ Type∪Constraint∪Expansion∪
Skeleton and E ∈ Expansion. Then the application of E
to X is denoted by [E]X and is obtained from E and X by
the following rules:
1. If E = ω, then [E]Y = ω, where Y ∈ Type∪Constraint∪
Expansion;
2. If E = ω, then [E]Q = ωterm(Q), where Q ∈ Skeleton;
3. If E = σ, then [E]X = [σ]X, where σ is a substitution;
4. If E = eE′, then [E]X = e[E′]X, where
e ∈ ExpansionV ariable and E′ ∈ Expansion;
5. If E = (E1 ∩ E2), then [E]X = ([E1]X ∩ [E2]X), where
E1, E2 ∈ Expansion.

Let us introduce the following notations:
1. e/σ = {e := eσ};
2. If ~e = e1e2 . . . en, then ~e/σ = e1/e2/ . . . /en/σ n ≥ 0,
where e1, . . . , en, e ∈ ExpansionV ariable and σ is a substi-
tution.
It is easy to see that [e/σ]eX = e[σ]X, [~e/σ]~eX = ~e[σ]X,
where X ∈ Type ∪ Constraint ∪ Expansion ∪ Skeleton.

Definition 2.11. The total function A : TermV ariable →
Type is called environment, if the following set is finite:
{x|x ∈ TermV ariable and A(x) /∈ ω}.

Environment A also can be written as a set of pairs:
A = {(x, A(x))|x ∈ TermV ariable}.
Let us introduce the following notations:
1. A[x → τ ] = {(y, A(y))|y ∈ TermV ariable and y 6= x} ∪
{(x, τ)};
2. A ∩B = {(x, (A(x) ∩B(x)))|x ∈ TermV ariable};
3. eA = {(x, eA(x))|x ∈ TermV ariable};
4. [E]A = {(x, [E]A(x))|x ∈ TermV ariable};
5. envω = {(x, ω)|x ∈ TermV ariable},
where A, B are environments and e ∈ ExpansionV ariable
and x ∈ TermV ariable and τ ∈ Type and E ∈ Expansion.

Definition 2.12. The set CType ⊂ Type is the least set
satisfying the following conditions:
1. If s ∈ TypeConstant, then s ∈ CType;
2. If s ∈ TypeConstant and τ ∈ CType, then (s → τ) ∈
CType.

Definition 2.13. The mapping Σ : Constant → CType is
called a constant table.

Convention 2.2. In order not to mention constant table
later, let us suppose that henceforth we are using some fixed
constant table.

2.2 Type inference rules
Definition 2.14. The quintuple of a term, a skeleton, an
environment, a type and a constraint, written (M . Q) :
(A ` τ)/∆, is called a judgement. The intended meaning of
a judgement is that Q is a proof that M has typing (A ` τ),
provided the constraint ∆ is solved.

Now let us introduce type inference rules, which are used to
derive judgements. Type inference rules are the following:

[VAR]
(x . x:τ ) : (envω[x → τ ] ` τ)/ω

[CONST]
(c . c:τ ) : (envω ` τ)/ω

, where τ = Σ(c)

[OMEGA]
(M . ωM ) : (envω ` ω)/ω

[E-VAR]
(M . Q) : (A ` τ)/∆

(M . eQ) : (eA ` eτ)/e∆

[ABS]
(M . Q) : (A ` τ)/∆

((λx.M) . (λx.Q)) : (A[x → ω] ` (A(x) → τ))/∆

[APP]
(M1 . Q1) : (A1 ` τ1)/∆1; (M2 . Q2) : (A2 ` τ2)/∆2

((M1M2) . (Q1Q2)
:τ ) : (A1 ∩A2 ` τ)/∆1 ∩∆2∩

(τ1
.
= (τ2 → τ))

[INT]
(M . Q1) : (A1 ` τ1)/∆1; (M . Q2) : (A2 ` τ2)/∆2

(M . (Q1 ∩Q2)) : (A1 ∩A2 ` (τ1 ∩ τ2))/∆1 ∩∆2

Definition 2.15. The pair (A ` τ) of an environment and
a type is called a typing of a term M if ∃Q ∈ Skeleton and
∃∆ ∈ Constraint s.t. the judgement (M . Q) : (A ` τ)/∆
is inferable and ∆ is solved.

Definition 2.16. The pair (A ` τ) of an environment and
a type is called a principal typing of a term M if
1. (A ` τ) is a typing of M ;
2. If (A′ ` τ ′) is a typing of M , then ∃E ∈ Expansion s.t.
A′ = [E]A and τ ′ = [E]τ .
In other words all typings of a term are obtained from prin-
cipal typing by means of expansion application.

Next lemma shows that each skeleton contains information
about one and only one inferable judgement.

Lemma 2.1. Let Q ∈ Skeleton. Then there exist one and
only one term M , environment A, type τ and constraint ∆
such that the judgement (M . Q) : (A ` τ)/∆ is inferable
and M = term(Q).
This lemma let us introduce the following functions:

2



env(Q) = A, type(Q) = τ , constraint(Q) = ∆, typing(Q) =
(A ` τ). It is easy to present algorithms of calculating func-
tions env, type, constraint and typing.

2.3 Initial Skeleton
Type inference algorithm, which will be introduced in sec-
tion 3.2, starts term typification by constructing initial skele-
ton of that term.

Definition 2.17. Let fix type variable a0 and expansion
variables e0, e1, e2 such that e0 ≺ e1 ≺ e2. The function
initial : Term → Skeleton maps terms to skeletons as fol-
lows:
1. initial(x) = x:a0 , where x ∈ TermV ariable;

2. initial(c) = c:Σ(c), where c ∈ Constant;
3. initial((λx.M)) = (λx.e0initial(M)), where
x ∈ TermV ariable and M ∈ Term;
4. initial((M1M2)) = (e1initial(M1)e2initial(M2))

:a0 ,
where M1, M2 ∈ Term.

Lemma 2.2. Let P = initial(M), where M ∈ Term. Then
solved(constraint(P )) = ω;

From lemma 2.2 it is easy to see that all singular constraints,
which are part of constraint(P ), are unsolved, where P is
an initial skeleton of some term. In section 3.2 we will see,
that type inference algorithm tries to solve some singular
constraints by applying substitutions on them and it starts
solving process from singular constraints, which are part of
constraint(P ). Unification rules, introduced in the next sec-
tion, are used to produce substitutions for solving singular
constraints.

2.4 Unification rules
Definition 2.18. The set Type′ ⊂ Type is the set of types,
which are constructed without using type constants and op-
eration →.

Definition 2.19. The function ExtractE : Type′ →
Expansion maps types from set Type′ to expansions as fol-
lows:
1. ExtractE(ω) = ω;
2. ExtractE(α) = ε, where α ∈ TypeV ariable;
3. ExtractE(eτ) = eExtractE(τ), where τ ∈ Type′ and
e ∈ ExpansionV ariable;
4. ExtractE((τ1 ∩ τ2)) = (ExtractE(τ1) ∩ ExtractE(τ2)),
where τ1, τ2 ∈ Type′.

Definition 2.20. The function ExtractS : Type′×Type →
Substitution maps pairs of a type from Type′ and a type to
substitutions as follows:
1. ExtractS(ω, τ ′) = ε, where τ ′ ∈ Type;
2. ExtractS(α, τ ′) = {α := τ ′}, where α ∈ TypeV ariable
and τ ′ ∈ Type;
3. ExtractS(eτ, τ ′) = e/ExtractS(τ, τ ′), where τ ∈ Type′

and τ ′ ∈ Type and e ∈ ExpansionV ariable;
4. ExtractS((τ1 ∩ τ2), τ

′) = [ExtractS(τ2, τ
′)]ExtractS(τ1,

τ ′), where τ1, τ2 ∈ Type′ and τ ′ ∈ Type.

Definition 2.21 (unifyβ rule). Let ∆̄ = ~e(e1(e0τ0 →
e0τ1)

.
= (e2τ2 → a0)) be a singular constraint, where τ0 ∈

Type′ and τ1, τ2 ∈ Type. Then rule unifyβ is applicable
to ∆̄ and the result of application is the following substi-
tution: σ = ~e/{a0 := [σ′]τ1, e1 := {e0 := σ′}, e2 := E′},
where E′ = ExtractE(τ0) and σ′ = ExtractS(τ0, τ2). The

application of rule unifyβ is written as ∆̄
unifyβ- σ.

Now let us explain the meaning of rule unifyβ .
Let ((λx.M1)M2) be a subterm of some term M , where
x ∈ TermV ariable and M1, M2 ∈ Term. Initial skeleton
of that subterm will be (e1(λx.e0P1)e2P2)

:a0 , where P1 =
initial(M1) and P2 = initial(M2). The part of constraint(
initial(M)), that corresponds to the initial skeleton of sub-

term mentioned above will be ~e(e1(e0τ0 → e0τ1)
.
= (e2τ2 →

a0)), where τ1 corresponds to the type of M1 (τ1 = type(P1))
and τ2 corresponds to the type of M2 (τ2 = type(P2)) and τ0

corresponds to the type of x in term M1 (τ0 = env(P1)(x)).
Before applying substitution created by rule unifyβ , type a0

is associated with each free occurrence of variable x in term
M1. After applying substitution, all that a0 type variables
will be replaced with type τ2 (this replacement is done by
substitution created by function ExtractS) and type of x in
term M1 will be changed. The same type is obtained when
applying substitution created by function ExtractE to the
type τ2 (it makes as many copies of type τ2 as there are free
occurrences of variable x in term M1). It is easy to see that
the process described above is very similar to the one step of
β-reduction. Next two lemmas show exact correspondence
of rule unifyβ with β-reduction.

Lemma 2.3 (correspondence with β-reduction). Let
M ∈ Term and P = initial(M). If constraint(P ) = ∆̄∩∆′,
where ∆̄ is a singular constraint to which rule unifyβ is ap-

plicable and ∆̄
unifyβ- σ, then ∃M ′ ∈ Term s.t. constraint

(P ′) = [σ]∆′ and env(P ′) = [σ]env(P ) and type(P ′) =
[σ]type (P ) and M →β M ′, where P ′ = initial(M ′).

Lemma 2.4 (correspondence with β-reduction). Let
M, M ′ ∈ Term and P = initial(M) and P ′ = initial(M ′).
If M →β M ′, then ∃∆̄ singular constraint such that cons-
traint(P ) = ∆̄∩∆′ and rule unifyβ is applicable to ∆̄ and

∆̄
unifyβ- σ and constraint(P ′) = [σ]∆′ and env(P ′) =

[σ]env(P ) and type(P ′) = [σ]type(P ).

Definition 2.22 (unifyx rule). Let ∆̄ = ~e(e1a0
.
= (e2τ →

a0)) be a singular constraint, where τ ∈ Type. Then rule
unifyx is applicable to ∆̄ and the result of application is
the following substitution: σ = ~e/{e1 := {a0 := (e2τ →
a0), e1 := e1e1ε, e2 := e1e2ε}}. The application of rule

unifyx is written as ∆̄
unifyx- σ.

Now let us explain the meaning of rule unifyx. Let (M1M2)
be a subterm of some term M , where M1, M2 ∈ Term. Dur-
ing work of type inference algorithm corresponding skele-
ton of that subterm can be (e1P1e2P2)

:a0 , where P1, P2 ∈
Skeleton and type(P1) = a0. Singular constraint corre-
sponding to the skeleton mentioned above will be ~e(e1a0

.
=

(e2τ → a0)), where τ corresponds to the type of M2 and
a0 corresponds to the type of M1 in the current stage of
work of type inference algorithm. After applying substitu-
tion created by rule unifyx type of M1 will be replaced with
(e2τ → a0) and the skeleton mentioned above will have the
following form: (P ′

1e2P2)
:a0 , where type(P ′

1) = (e2τ → a0).
The third unification rule is called unifyc.

Definition 2.23 (unifyc rule). Let ∆̄ = ~e(e1τ0
.
= (e2τ →

a0)) be a singular constraint, where τ0 ∈ CType and τ ∈
Type. Then rule unifyc is applicable to ∆̄:
1. If τ0 = s, where s ∈ TypeConstant, then application of
rule unifyc is failed;
2. If τ 6= s and τ 6= a0, where s ∈ TypeConstant, then
application of rule unifyc is failed;
3. If τ0 = (s → τ ′) and τ = s, where s ∈ TypeConstant and
τ ′ ∈ CType, then the result of application of rule unifyc is
σ = ~e/{a0 := τ ′, e1 := {a0 := e1a0, e1 := e1e1ε, e2 := e1e2ε}
, e2 := {a0 := e2a0, e1 := e2e1ε, e2 := e2e2ε}};
4. If τ0 = (s → τ ′) and τ = a0, where s ∈ TypeConstant
and τ ′ ∈ CType, then the result of application of rule unifyc

is σ = ~e/{a0 := τ ′, e1 := {a0 := e1a0, e1 := e1e1ε, e2 :=
e1e2ε}, e2 := {a0 := s, e1 := e2e1ε, e2 := e2e2ε}}.
In cases 3 and 4 application of rule unifyc is written as

∆̄
unifyc- σ.

Now let us explain the meaning of rule unifyc. Let (M1M2)
be a subterm of some term M , where M1, M2 ∈ Term. Dur-

3



ing work of type inference algorithm corresponding skele-
ton of that subterm can be (e1P1e2P2)

:a0 , where P1, P2 ∈
Skeleton and type(P1) = τ0 ∈ CType. Singular constraint
corresponding to the skeleton mentioned above will be ~e(e1τ0.
= (e2τ → a0)), where τ corresponds to the type of M2 and
τ0 corresponds to the type of M1 in the current stage of work
of type inference algorithm. After applying substitution cre-
ated by rule unifyc type of (M1M2) will be replaced with
τ ′ and type of M2 will be replaced with s if necessary and
the skeleton mentioned above will have the following form:

(P ′
1P

′
2)

:τ ′
, where type(P ′

1) = (s → τ ′) and type(P ′
2) = s.

Next lemma shows, that the substitution created by rule
unifyβ , unifyx or unifyc solves the corresponding singular
constraint.

Lemma 2.5. Let ∆̄ be a singular constraint to which rule

unifyy is applicable and ∆̄
unifyy- σ, where y ∈ {β, x, c}.

Then [σ]∆̄ is solved.

3. TYPE INFERENCE ALGORITHM
3.1 Unification algorithm
Unification algorithm tries to solve given constraint that ini-
tially corresponds to some initial skeleton. Unification algo-
rithm is called from type inference algorithm and in fact is
doing the main work of type inference. Before presenting
unification algorithm let us give some definitions.

Definition 3.1. Let ∆ = ∆̄1 ∩ . . . ∩ ∆̄n ∈ Constraint
n ≥ 1, where ∆̄1, . . . , ∆̄n are singular constraints and E-
Path(∆̄i) 6= E-Path(∆̄j) i, j = 1, . . . , n. Then the leftmost/
outermost constraint of ∆, written LO(∆), is a singular con-
straint from ∆̄1, . . . , ∆̄n that has the least E-path, i.e.
LO(∆) = ∆̄k, where k ∈ {1, . . . , n} and E-Path(∆̄k) ≺ E-
Path(∆̄i) ∀i ∈ {1, . . . , n} \ {k}.
Definition 3.2. Let ∆ = ∆̄1 ∩ . . . ∩ ∆̄n ∈ Constraint
n ≥ 1, where ∆̄1, . . . , ∆̄n are singular constraints and E-
Path(∆̄i) 6= E-Path(∆̄j) i, j = 1, . . . , n. Then the right-
most/innermost constraint of ∆, written RI(∆), is a sin-
gular constraint from ∆̄1, . . . , ∆̄n that has the greatest E-
path, i.e. RI(∆) = ∆̄k, where k ∈ {1, . . . , n} and E-
Path(∆̄i) ≺ E-Path(∆̄k) ∀i ∈ {1, . . . , n} \ {k}.
Let us explain the meaning of LO(∆) and RI(∆). Looking
at type inference rules we can say that new singular con-
straint is added to the constraint part of the skeleton only
after applying rule [APP]. Hence each singular constraint
corresponds to the one subterm of the form (M1M2), where
M1, M2 ∈ Term. Without proof let us mention that LO(∆)
corresponds to the leftmost, outermost subterm of the form
(M1M2) and RI(∆) corresponds to the rightmost, inner-
most subterm of the form (M1M2).

Definition 3.3. Let ∆ = ∆̄1 ∩ . . . ∩ ∆̄n ∈ Constraint
n ≥ 1, where ∆̄1, . . . , ∆̄n are singular constraints and I =
{i|1 ≤ i ≤ n and rule unifyβ is applicable to ∆̄i}. Then
filterβ(∆) =

⋂
i∈I

∆̄i (we suppose that filterβ(∆) = ω in

that case when I = ∅).
Algorithm of unification(Unify).
Input: constraint ∆ such that solved(∆) = ω.
Output: returns substitution that solves constraint ∆ or
fails or never returns.
1. If ∆ = ω, then return ε.

2. If filterβ(∆) 6= ω, then LO(filterβ(∆))
unifyβ- σ and

return [Unify(unsolved([σ]∆))]σ.
3. If rule unifyx is applicable to RI(∆), then

RI(∆)
unifyx- σ and return [Unify(unsolved([σ]∆))]σ.

4. If rule unifyc is applicable to RI(∆) and this application

is not failed, then RI(∆)
unifyc- σ and return

[Unify(unsolved([σ]∆))]σ, else fail.

Lemma 3.1 (correctness of unification algorithm).
Let M ∈ Term and ∆ = constraint(initial(M)). Then if
Unify(∆) = σ, then [σ]∆ is solved.

It is easy to see that unification algorithm first tries to solve
singular constraints to which rule unifyβ is applicable. It
means that during his work unification algorithm does im-
plicit β-reductions in initial term until reducing the initial
term to the β-normal form, which happens when algorithm
first time arrives in point 3 or ends his work at point 1.

Remark 3.1. It is very important that in point 2 unification
algorithm applies rule unifyβ to the LO(filterβ(∆)). This
choice ensures that in each step of implicit β-reduction unifi-
cation algorithm will treat the leftmost, outermost β-redex.
It is known that in this case β-normal form is reachable if it
is exists.

3.2 Type inference algorithm
Type inference algorithm(Typify).
Input: term M .
Output: returns typing of M or fails or never returns.
1. P = initial(M). 2. σ = Unify(constraint(P )).
3. Return ([σ]env(P ) ` [σ]type(P )).

Theorem 3.1 (correctness of Typify algorithm). Let
M ∈ Term. Then if Typify(M) = (A ` τ), then (A ` τ) is
a typing of a term M .

Now let us present the main theorem of this paper, which
shows that typing returned by the type inference algorithm
is a principal typing of a given term.

Theorem 3.2. Let M ∈ Term and ∃M ′ ∈ Term s.t.
M ′ ∈ β-NF and M --

βM ′. Then:
1. If exists typing of a term M ′ such that during inference of
corresponding judgement rule [OMEGA] is not used, then
Typify(M) succeeds.
2. If (A ` τ) = Typify(M), then (A ` τ) is a principal
typing of a term M .

Remark 3.2. Type inference algorithm returns principal
typing of a term that has β-normal form, except that sit-
uations when it is not possible to type β-normal form of a
given term without using rule [OMEGA]. Type inference al-
gorithm never returns for terms that haven’t β-normal form.

REFERENCES
[1] S. Carlier, J. B.Wells, ”Type inference with expansion

variables and intersection types in System E and an
exact correspondence with β-reduction.”, In Proc. 6th
Int’l Conf. Principles & Practice Declarative
Programming, 2004.

[2] R. Milner, ”Theory of Type Polymorphism in
Programming”, Journal of Computer and System
Sciences, No. 17, pp. 348-375, 1978.

[3] J. B. Wells, ”The essence of principal typings.”, In
Proc. 29th Int’l Coll. Automata, Languages, and
Programming, vol. 2380 of LNCS. Springer-Verlag, 2002.

[4] T. Jim, ”What are principal typings and what are they
good for?”, In Conf. Rec. POPL ’96: 23rd ACM Symp.
Princ. of Prog. Langs., 1996.

[5] S. Carlier, J. Polakow, J. B. Wells, A. J. Kfoury,
”System E: Expansion variables for flexible typing with
linear and non-linear types and intersection types.”, In
Programming Languages & Systems, 13th European
Symp. Programming, vol. 2986 of LNCS.
Springer-Verlag, 2004.

[6] H. P. Barendregt, ”The Lambda Calculus: Its Syntax
and Semantics.”, Amsterdam, North Holand, 1981.

4




