

Universal System of Interpretation of
Strongly Typed Functional Programs

 Ruben Hakopian

Yerevan State University
Yerevan, Armenia

e-mail: ruben.hakopian@gmail.com

ABSTRACT
The paper is devoted to implementation of universal system of
interpretation of strongly typed functional programs, which
uses following seven algorithms: active, passive and
algorithms based on reduction to normal form and full,
parallel external, parallel internal, left external and left
internal substitutions.

Keywords
Interpretation system, strongly typed, functional program,
interpretation algorithm.

1. DEFINITIONS AND RESULTS USED
Let us give definitions used in the paper. Most of them can be
found in [1], [2] and [3].

Let M be a partially ordered set, which has a least element

,⊥ and each element of M is comparable with itself and ⊥

only. Let us define the set types :Types

1. ;TypesM ∈

2. if),0(,...,, 1 >∈ kTypeskααβ then the set of all

monotomic mappings from kαα ×× ...1
into β

(denoted by]...[1 βαα →×× k) belongs to .Types

Let .Types∈α The order of the type α is a natural number

(defined as)(αord), where:

1. if ,M=α then ;0)(=αord

2. if],...[1 βααα →××= k then =)(αord
.1))(),(),...,(max(1 +βαα ordordord k

For each Types∈α we will have a countable set of variables

αV of type .α If the variable αVx ∈
and constant ,α∈c

then =)(xord).()(αordcord = Let us define the set of

terms: U
Types∈

Λ=Λ

α

α , where αΛ - is set of terms of type ,α

the following way:

1. if ,, Typesc ∈∈ αα then ;αΛ∈c

2. if ,, TypesVx ∈∈ αα then ;αΛ∈x

3. if ,]...[1 βαα →××Λ∈
k

t

,
iit αΛ∈

,, Typesi ∈αβ

)0(,...,1 >= kki , then βΛ∈),...,(1 kttt and),...,(1 ktt

will be denoted by area of influence of applicator ;t

4. if ,βΛ∈t

,
i

Vxi α∈

,, Typesi ∈αβ

,ji xxji ≠⇒≠

),0(,...,1, >= kkji

then ∈][...1 txx kλ ;]...[1 βαα →××Λ

k

The notions of a free and bound occurrence of a variable in a
term and the notation of a free variable of a term are
introduced in a conventional way. The set of all free variables

of a term t is denoted by).(tFV Terms 21, tt are said to be

congruent (which is denoted by 21 tt ≡) if one term can be

obtained from the other by renaming bound variables. In what
follows, congruent terms are considered identical.

Let ,Λ∈t

,
iit αΛ∈

,

i
Vxi α∈

,Typesi ∈α

,ji xxji ≠⇒≠

).0(,...,1, >= kkji The simultaneous substitution of the

terms ktt ,...,1 for some of free occurrences of the variables

kxx ,...,1
respectively, into term t will be admissible, if all

considered free variables of the term being substituted remain
free after substitution. Term ,t where some of free

occurrences of the variables kxx ,...,1
are interested is denoted

by ,,,
1

><
sii xxt K

},,,{ 1 ki xxx

j
K∈

.,,1 sj K=

The term

obtained from a term ><
sii xxt ,,

1
K as a result of

substitution of terms
sii tt ,...,

1
 for occurrences of the variables

sii xx ,,
1
K respectively will be denoted by .,,

1
><

sii ttt K

The term obtained from a term t as a result of substitution of

terms ktt ,...,1
for all free occurrences of variables kxx ,...,1

respectively will be denoted by }./,,/{ 11 kk xtxtt K

For each term αΛ∈t we will correspond a constant

,,)(
0

TypestValy ∈∈ αα where },,,{)(1 nyytFV K⊂

,
i

Vyi α∈

,,, 00
10 >=< nyyy K

,0

iiy α∈

,Typesi ∈α

),0(,,1 ≥= nni K the following way:

1. if ,, α∈≡ cct then ;)(
0

ctValy =

2. if ,, αVxxt ∈≡

then ,)(0

0 iy ytVal = where ,iyx ≡

);0(,...,1 >= nni

3. if ,),...,(1 ατ Λ∈≡ kttt

,]...[1 ααατ →××Λ∈
k

,
iit αΛ∈

,Typesi ∈α

),1(,...,1 ≥= kki then =)),...,((10 ky ttVal τ

));(,),()((

000 1 kyyy tValtValVal Kτ

4. if ,][...]...[1 1 βαατλ →××Λ∈≡
kkxxt

,βτ Λ∈

,

i
Vxi α∈

,, Typesi ∈αβ

),1(,...,1 ≥= kki then

βαατλ →×× kky xxVal K11 :])[...(
0

and for any

,,, 00
10 >=< kxxx K

,0

iix α∈

ki K,1=

will have

)()])([...(
000 01 ττλ yxky ValxxxVal ′= , where

=])[...(1 τλ kxxFV },,{
1 mii yy K

.,, 00

0 1
>=<′

mii yyy K

Let 21 , tt be terms and },,,{)()(121 nyytFVtFV K=∪

,
i

Vyi α∈

,Typesi ∈α

).0(,1 ≥= nni K Terms 21, tt will be

called equivalent (denoted by 21 t~t), if for any

,,, 00
10 >=< nyyy K where ,,,1,0

niy ii K=∈α it is true

).()(21 00
tValtVal yy = Let ,αΛ∈t

,Types∈α

⊆)(tFV

},,,{ 1 nyy K

,
i

Vyi α∈

,Typesi ∈α

).0(,...,1 ≥= nni

Term

t will be called constant term with α∈b value, if for any

,,, 00
10 >=< nyyy K

,0

iiy α∈

ni ,,1 K= we have

.)(
0

btValy = Further we will consider terms, which do not

use constants with order .2≥

A strongly type functional program P is a system of
equations of the form

=

=

,

11

nnF

F

τ

τ

K (1)

where ,
i

VFi α∈

,ji FFji ≡/⇒≠

,
ii ατ Λ∈

},,,{)(1 ni FFFV K⊂τ

,Typesi ∈α

),1(,,1, ≥= nnji K all

used constants have an order ,1≤ constants of order 1 are

computable mappings and).1(][1 ≥→= kMM
kα The

mapping ,: 11 nnP αααα ××→××Ψ KK where

>=<Ψ)(,),()(1 nggP ValValg ττ K and ng αα ××∈ K1 will

be called a mapping corresponding the program (1). By

nig i ,,1,)(K= we will denote th
i component of the vector

.g We will say that nf αα ××∈ K1 is the solution of the

program (1), if .)(ffP =Ψ In [1] it is proved that any

program (1) has a least solution. The equation 11 τ=F is

called the main equation of program ,P and the function

1)(ffP = – the fixpoint semantics of the program ,P where

f is the least solution of the program .P The set),(PFix

which corresponds to fixpoint semantics of the program ,P is

defined the following way: =)(PFix

}.,,)(|,{ MmMmmmfmm
k

P ∈∈=><

Let us remind the notion of β -reduction.

),,(][...{ 11 kk tttxx Kλβ <=

,,/{ 11 Kxtt ,|}/
i

Vxxt ikk α∈>

,, Typest ii i
∈Λ∈ αα

)}.1(,,1 ≥= kki K Term

),]([... 11 kk tttxx Kλ

is called β -redex, and

}/,,/{ 11 kk xtxtt K – its bundle. We will say, that term t′ is

obtained from term t by one-step β -reduction),(tt ′→β if

,, ττ ′≡′≡ tttt τ is β -redex, and τ ′ – is its bundle, where τt
is denoted by term t

with some fixed occurrence of sub-term

,τ

and τ ′t

– term, obtained from substitution of the particular

occurrence of sub-term τ

with term .τ ′ We will say, that

term t′ is obtained from term t by β -reduction

),(tt ′→→β if either ,tt ′≡ or exists a sequence of terms

)0(,,1 ≥ktt kK for which .1 tttt k ′→→→→ ββββ K

Let us remind the notion of δ -reduction. Let

fttf k |),,({ 1 ><=∆ τK is a constant,)0(,, 1 >ktt kKτ are

terms and either τ – is constant and),(1 kttf K is constant

term with value ,τ or τ – is a sub-term of term),(1 kttf K

and }.),(1 τ~ttf kK

Any recursive subset δ of set ∆ is

defined as notion of δ -reduction. If ,, δττ >∈′< then τ is

noted to be δ -redex, and τ ′ – its bundle. We will say, that

term t′ is obtained from term t by one-step δ -

reduction)(tt ′→δ , if ττ ′≡′≡ tttt , and τ is δ -redex, and

τ ′ – its bundle. We will say, that term t′ is obtained from t

by δ -reduction),(tt ′→→δ if either ,tt ′≡ or exists a

sequence of terms)0(,,1 ≥ktt kK

for which

.1 tttt k ′→→→→ δδδδ K

The notion of δβ ∪ -reduction will be denoted by .βδ

The

βδ -reduction will be called just reduction, βδ -redex will be

called just redex, one-step βδ -reduction will be denoted by

→ , and βδ -reduction – →→ . The term not containing

redexes is referred as normal form. The set of all normal
forms is denoted by .NF

Let us denote 0∆ as the following subset of the set ∆ :

∆>∈<><=∆ ττ),,(|),,({ 110 kk ttfttf KK , where τ is

either a constant, or)}1(kiti ≤≤≡τ . The notion of δ -

reduction will be called natural, if:

1. ;0∆⊂δ

2. δ – is a single-valued relation, i.e. if δτ >∈< 1,t and

,, 2 δτ >∈< t then ,21 ττ ≡ where ;,, 21 Λ∈ττt

3. for each constant term),(1 kttf K with value ,Mm ∈

,),(1 mttf k →→K where f is a constant and

.,1 Λ∈ktt K

In [3] is given a notion of substitutionability and inheritability

of δ -reduction. It is also proved, that

ttNFtttttt ′′≡′⇒∈′′′′′→→′→→ ,,, for any terms tt ′, and

,t ′′ if and only if the δ -reduction is natural and featured with

substitutionability and inheritability. Further, we will consider

only these δ -reductions.

2. INTERPRETATION ALGORITHMS
Let us introduce the notion of an interpretation algorithm .A

Having received a program P of form (1) and a term)(1 mF

)(kMmwhere ∈ on its input, the algorithm A either

terminates with the result Mm ∈ or works endlessly. The

algorithm A uses following three kinds of operations:

1. substitution of terms nττ ,,1 K for some free occurrences

of variables nFF ,,1 K respectively;

2. a one-step β -reduction;

3. a one-step δ -reduction.

Let A be an interpretation algorithm and P a program. The

set),(Proc PA which corresponds the procedural semantics

which uses the interpretation algorithm ,A we will define the

following way: |,{)(Proc ><= mmPA algorithm A on P

and)(1 mF terminates with a result ,≠⊥m where ,k
Mm ∈

}.Mm ∈ We will say, that the procedural semantics which

uses the interpretation algorithm A is consistent, if

)()(Proc PFixPA ⊂ is true for any program .P

In [4] is proven the following theorem (on consistency). The
procedural semantics which uses any interpretation algorithm
is consistent.
We will describe seven interpretation algorithms.

Algorithm ACT (active).
Input: program ,P term t .

Output: term),(ACT tP if ACT is defined on P and .t

1. if NFt ∈ and =∩ },,{)(FV 1 nFFt K Ø, then ,t else go

to 2;

2. let ><≡ iFtt , where iF is the leftmost occurrence of

variables { }nFF ,,1 K in term ,t and this particular

occurrence is on the left of the leftmost redex of the

term ,t then),,(A >< itPCT τ else go to 3;

3. if),,]([11 kk ttxxtt KK τλ≡ and),,]([11 kk ttxx KK τλ is the

leftmost redex of the term ,t then

),,(ACT }/),(,,/),({ 11 kk xtPACTxtPACTtP Kτ else go to 4;

4. if τtt ≡ and τ – is the leftmost δ -redex, then

),,(ACT τ ′tP where τ ′ – is the bundle of the redex .τ

Algorithm PAS (passive).

Input: program ,P term t .

Output: term),(P tPAS if PAS is defined on P and .t

1. if NFt ∈ and =∩ },,{)(FV 1 nFFt K Ø, then ,t else go

to 2;

2. let ><≡ iFtt , where iF is the leftmost occurrence of

variables { }nFF ,,1 K in term ,t and this particular

occurrence is on the left of the leftmost redex of the

term ,t then),,(P >< itPAS τ else go to 3;

3. if),,]([11 kk ttxxtt KK τλ≡ and),,]([11 kk ttxx KK τλ is the

leftmost redex of the term ,t then

),,(PAS }/,,/{ 11 kk xtxttP Kτ else go to 4;

4. if τtt ≡ and τ – is the leftmost δ -redex, then

),,(PAS τ ′tP where τ ′ – is the bundle of the redex .τ

Algorithm FS (full substitution).

Input: program ,P term t .

Output: term),(FS tP if FS is defined on P and .t

1. if NFt ∈ and =∩ },,{)(FV 1 nFFt K Ø, then ,t else if

,NFt ∉ go to 2, else go to 3;

2. let τtt ≡ and τ is leftmost redex, then),,(FS τ ′tP

where τ ′ is bundle of the redex ;τ

3. let ><≡
sii FFtt ,,

1
K , where

sii FF ,,
1
K are all

occurrences of variables { }nFF ,,1 K in term ,t then

).,,,(FS
1

><
siitP ττ K

The free occurrence of variable in a term will be called
internal, if it is not a part of the applicator the area of
influence of which includes a free occurrence of a variable.
The free occurrence of a variable in a term will be called
external, if it is not a part of an area of an influence of an
applicator which contains a free occurrence of a variable.

Algorithm PES (parallel external substitution).
Input: program ,P term t .

Output: term),(PES tP if PES is defined on P and .t

1. if NFt ∈ и =∩ },,{)(FV 1 nFFt K Ø, then ,t else if

,NFt ∉ go to 2, else go to 3;

2. let τtt ≡ and τ is the leftmost redex, then),,(PES τ ′tP

where τ ′ is bundle of the redex ;τ

3. let ><≡
sii FFtt ,,

1
K , where

sii FF ,,
1
K are all external

occurrences of variables { }nFF ,,1 K in term ,t then

).,,,(PES
1

><
siitP ττ K

Algorithm PIS (parallel internal substitution).

Input: program ,P term t .

Output: term),(PIS tP if PIS is defined on P and .t

1. if NFt ∈ and =∩ },,{)(FV 1 nFFt K Ø, then ,t else if

,NFt ∉ go to 2, else go to 3;

2. let τtt ≡ and τ is the leftmost redex, then),,(PIS τ ′tP

where τ ′ is bundle of the redex ;τ

3. let ><≡
sii FFtt ,,

1
K , where

sii FF ,,
1
K are all internal

occurrences of variables { }nFF ,,1 K in term ,t then

).,,,(PIS
1

><
siitP ττ K

Algorithm LES (left external substitution).

Input: program ,P term t .

Output: term),(SEL tP if LES is defined on P and .t

1. if NFt ∈ and =∩ },,{)(FV 1 nFFt K Ø, then ,t else if

,NFt ∉ go to 2, else go to 3;

2. let τtt ≡ and τ is the leftmost redex, then),,(LES τ ′tP

where τ ′ is bundle of the redex ;τ

3. let ><≡ iFtt , where iF is the leftmost external

occurrence of variables { }nFF ,,1 K in term ,t then

).,(LES >< itP τ

Algorithm LIS (left internal substitution).

Input: program ,P term t .

Output: term),(SIL tP if LIS is defined on P and .t

1. if NFt ∈ and =∩ },,{)(FV 1 nFFt K Ø, then ,t else if

,NFt ∉ go to 2, else go to 3;

2. let τtt ≡ and τ is the leftmost redex, then),,(LIS τ ′tP

where τ ′ is bundle of the redex ;τ

3. let ><≡ iFtt , where iF is the leftmost internal

occurrence of variables { }nFF ,,1 K in term ,t then

).,(LIS >< itP τ

3. UNIVERSAL SYSTEM OF

INTERPRETATION (USI)
Here is described the implementation of universal system of
interpretation of strongly type functional programs of form
(1). In section 3.1 will be given the notion of semantic tree
and an algorithm for generating a semantic tree for a given
term. In section 3.2 will be described the implementation of
USI.

3.1. Semantic Tree
Let us denote 0),...,,,(1 ≥kTTvalueNode k

as a semantic tree,

where kTT ...,,1
are its semantic sub-trees, and the value is

one of the following:

1. ,cvalue = where c is constant and ;0=k

2. ,xvalue = where x is variable and ;0=k

3. ,napplicatiovalue = where ;2≥k

4. ,nabstractiovalue = where ,2≥k
 11 ...,, −kTT are

semantic trees with ,xvalue = where x is variable.

Given the term ,t algorithm TREE returns corresponding

semantic tree .T

Algorithm TREE

Input: term t .

Output: semantic tree .T

1. if ,ct ≡ then);(cNode

2. if ,xt ≡ then);(xNode

3. if),,...,(1 nttt τ≡ then),(,(τTREEnapplicatioNode

));(...,),(1 ntTREEtTREE

4. if],[,...,1 τλ nxxt ≡ then ,(nabstractioNode

));(),(...,),(1 τTREExTREExTREE n

Reductions and substitutions on semantic tree are defined the

following way: let .,, tttt ′→Λ∈′ We will say, that tree

)(tTREET ′=′ is obtained from tree)(tTREET = using one-

step reduction. The similar way is defined reduction

operation. Let ,, Λ∈′tt },/,...,/{ 11 kk xxt ττ′ ,
ii ατ Λ∈

,
i

Vxi α∈ ,Typesi ∈α .1,,...,1 ≥= kki We will say, that tree

)(tTREET ′=′ is obtained from tree)(tTREET = using

substitution of occurrences of variables .ix

Given the semantic tree ,T algorithm TYPE returns the type

of the term t for which).(tTREET =

Algorithm TYPE

Input: semantic tree)....,,,(1 kTTvalueNodeT =

Output: ,α where αΛ∈t and).(tTREET =

1. if ,cvalue = αΛ∈c is constant then ;α

2. if ,xvalue = αΛ∈x is variable then ;α

3. if ,napplicatiovalue = ,,...,1),(kiTTYPE ii ==α

and

]...[21 βααα →××= k
then ;β

4. if ,nabstractiovalue = ,,...,1),(kiTTYPE ii ==α then

]....[11 kk ααα →×× −

3.2. Implementation of the System
Given the program P and terms m

the system generates

semantic trees for terms)(1 mF and .,...,1 nττ The lexical

analyzer tokenizes terms nmF ττ ,...,),(11 into lexemes and

checks for the correctness of braces. These lexemes are
processed by semantic analyzer and following semantic trees:

)),((1 mFTREET =

),(ii TREET τ=

ni ...,,1=

are generated

using the algorithm TREE. The strong type correctness of the
program P is checked using algorithm TYPE by ensuring

that),(ii TTYPE=α,,1 ni = The USI starts the

interpretation from the tree .T

The system iteratively

performs reduction and substitution operations over the
semantic tree based on the chosen interpretation algorithm

and terminates with a result MmmNode ∈),(or works

endlessly.

The interpretation algorithms: ACT, PAS, FS, PIS, PES, LIS
and LES described in section 2 are implemented in the USI.
The system provides step-by-step tracing and automatic
termination of execution if maximum number of iteration is
elapsed. The system also provides comparison engine for
algorithms. Having a program P and chosen multiple
interpretation algorithms the system simultaneously interprets
the program using chosen interpretation algorithms. In the
system there are implemented serialization facilities for
persisting programs and with ability of loading them further.

The system Graphical User Interface (GUI) provides
functionality of constructing terms, programs, program inputs
and controlling the interpreter. During the interpretation the
GUI outputs interpretation progress and graphically renders
the semantic tree to the screen. It also provides facilities for
step-by-step interpretation.

The USI was implemented on C# language based on
Microsoft .NET Framework 2.0. The GUI was developed
using Windows Forms 2.0 library.

REFERENCES
[1] S.A. Nigiyan, “Functional Languages”, Programming and

Computer Software, Vol. 17, pp. 290-297, 1992.
[2] S.A. Nigiyan, “On Interpretation of Functional
Programming Languages”, Programming and Computer

Software, Vol. 19, N 2, pp. 71-78, 1994.

[3] L.E. Budaghyan, “On Formalizing of Notion of δ -

reduction in Monotomic Models of Typed λ -calculus”, YSU:

Uchenie Zapiski, N 1, pp. 27-36, 2000 (in Russian).
[4] R.Y. Hakopian, “On Procedural Semantics of Strongly
Typed Functional Programs”, YSU: Uchenie Zapiski, N 3, pp.
59-70, 2008 (in Russian).
[5] M. Michaelis, “Essential C# 2.0 (Microsoft .NET
Development Series)”, Addison-Wesley, 2006.

