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ABSTRACT 
The paper is devoted to implementation of universal system of 
interpretation of strongly typed functional programs, which 
uses following seven algorithms: active, passive and 
algorithms based on reduction to normal form and full, 
parallel external, parallel internal, left external and left 
internal substitutions.  
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1. DEFINITIONS AND RESULTS USED 
Let us give definitions used in the paper. Most of them can be 
found in [1], [2] and [3].  
 
Let M  be a partially ordered set, which has a least element 

,⊥  and each element of M  is comparable with itself and ⊥  

only. Let us define the set types :Types  

1. ;TypesM ∈  

2. if ),0(,...,, 1 >∈ kTypeskααβ  then the set of all 

monotomic mappings from kαα ×× ...1  
into β

 
(denoted by ]...[ 1 βαα →×× k ) belongs to .Types  

Let .Types∈α  The order of the type α  is a natural number 

(defined as )(αord ), where: 

1. if ,M=α  then ;0)( =αord  

2. if ],...[ 1 βααα →××= k  then =)(αord  
.1))(),(),...,(max( 1 +βαα ordordord k  

For each Types∈α  we will have a countable set of variables 

αV  of type .α  If the variable αVx ∈  
and constant ,α∈c  

then =)(xord ).()( αordcord =  Let us define the set of 

terms: U
Types∈

Λ=Λ

α

α , where αΛ - is set of terms of type ,α  

the following way: 

1. if ,, Typesc ∈∈ αα  then ;αΛ∈c  

2. if ,, TypesVx ∈∈ αα  then ;αΛ∈x  

3. if ,]...[ 1 βαα →××Λ∈
k

t
 

,
iit αΛ∈

 
,, Typesi ∈αβ
 

)0(,...,1 >= kki , then βΛ∈),...,( 1 kttt  and ),...,( 1 ktt
 

will be denoted by area of influence of applicator ;t  

4. if ,βΛ∈t
 

,
i

Vxi α∈
 

,, Typesi ∈αβ
 

,ji xxji ≠⇒≠
 

),0(,...,1, >= kkji
 
then ∈][...1 txx kλ ;]...[ 1 βαα →××Λ

k
 

The notions of a free and bound occurrence of a variable in a 
term and the notation of a free variable of a term are 
introduced in a conventional way. The set of all free variables 

of a term t  is denoted by ).(tFV  Terms 21, tt  are said to be 

congruent (which is denoted by 21 tt ≡ ) if one term can be 

obtained from the other by renaming bound variables. In what 
follows, congruent terms are considered identical. 
 

Let ,Λ∈t
 

,
iit αΛ∈

 
,

i
Vxi α∈

 
,Typesi ∈α
 

,ji xxji ≠⇒≠
 

).0(,...,1, >= kkji  The simultaneous substitution of the 

terms ktt ,...,1  for some of free occurrences of the variables 

kxx ,...,1  
respectively, into term t  will be admissible, if all 

considered free variables of the term being substituted remain 
free after substitution. Term ,t  where some of free 

occurrences of the variables kxx ,...,1  
are interested is denoted 

by ,,,
1

><
sii xxt K

 
},,,{ 1 ki xxx

j
K∈

 
.,,1 sj K=
 
The term 

obtained from a term ><
sii xxt ,,

1
K  as a result of 

substitution of terms 
sii tt ,...,

1
 for occurrences of the variables 

sii xx ,,
1
K  respectively will be denoted by .,,

1
><

sii ttt K  

The term obtained from a term t  as a result of substitution of 

terms ktt ,...,1  
for all free occurrences of variables kxx ,...,1   

respectively will be denoted by }./,,/{ 11 kk xtxtt K  

 
For each term αΛ∈t  we will correspond a constant 

,,)(
0

TypestValy ∈∈ αα  where },,,{)( 1 nyytFV K⊂
 

,
i

Vyi α∈
 

,,, 00
10 >=< nyyy K

 
,0

iiy α∈
 

,Typesi ∈α
 

),0(,,1 ≥= nni K   the following way: 

1. if ,, α∈≡ cct   then ;)(
0

ctValy =  

2. if ,, αVxxt ∈≡
 
then ,)( 0

0 iy ytVal =  where ,iyx ≡
 

);0(,...,1 >= nni  

3. if ,),...,( 1 ατ Λ∈≡ kttt
 

,]...[ 1 ααατ →××Λ∈
k  

,
iit αΛ∈

 
,Typesi ∈α

 
),1(,...,1 ≥= kki  then  =)),...,(( 10 ky ttVal τ

 
));(,),()((

000 1 kyyy tValtValVal Kτ  

4. if ,][... ]...[1 1 βαατλ →××Λ∈≡
kkxxt

 
,βτ Λ∈

 
,

i
Vxi α∈

 
,, Typesi ∈αβ
 

),1(,...,1 ≥= kki  then 

βαατλ →×× kky xxVal K11 :])[...(
0  

and for any 

,,, 00
10 >=< kxxx K

 
,0

iix α∈
 

ki K,1=
 
will have 

)()])([...(
000 01 ττλ yxky ValxxxVal ′= , where 

=])[...( 1 τλ kxxFV },,{
1 mii yy K

 
.,, 00

0 1
>=<′

mii yyy K  

Let 21 , tt  be terms and },,,{)()( 121 nyytFVtFV K=∪
  

,
i

Vyi α∈
 

,Typesi ∈α
 

).0(,1 ≥= nni K  Terms 21, tt  will be 

called equivalent (denoted by 21 t~t ), if for any 



,,, 00
10 >=< nyyy K  where ,,,1,0

niy ii K=∈α  it is true 

).()( 21 00
tValtVal yy =  Let ,αΛ∈t

 
,Types∈α
 

⊆)(tFV
 

},,,{ 1 nyy K
 

,
i

Vyi α∈
 

,Typesi ∈α
 

).0(,...,1 ≥= nni
 
Term 

t  will be called constant term with α∈b  value, if for any 

,,, 00
10 >=< nyyy K

 
,0

iiy α∈
 

ni ,,1 K=   we have  

.)(
0

btValy =  Further we will consider terms, which do not 

use constants with order .2≥  

 
A strongly type functional program P  is a system of 
equations of the form

 








=

=

,

11

nnF

F

τ

τ

K  (1) 

where ,
i

VFi α∈
 

,ji FFji ≡/⇒≠
 

,
ii ατ Λ∈

 
},,,{)( 1 ni FFFV K⊂τ

 
,Typesi ∈α
 

),1(,,1, ≥= nnji K  all 

used constants have an order ,1≤  constants of order 1  are 

computable mappings and ).1(][1 ≥→= kMM
kα  The 

mapping ,: 11 nnP αααα ××→××Ψ KK  where 

>=<Ψ )(,),()( 1 nggP ValValg ττ K  and ng αα ××∈ K1  will 

be called a mapping corresponding the program (1). By 

nig i ,,1,)( K=  we will denote th
i  component of the vector 

.g  We will say that nf αα ××∈ K1  is the solution of the 

program (1), if .)( ffP =Ψ  In [1] it is proved that any 

program (1) has a least solution. The equation 11 τ=F  is 

called the main equation of program ,P  and the function 

1)( ffP =  – the fixpoint semantics of the program ,P  where 

f  is the least solution of the program .P  The set ),(PFix  

which corresponds to fixpoint semantics of the program ,P  is 

defined the following way: =)(PFix
 

}.,,)(|,{ MmMmmmfmm
k

P ∈∈=><
 
 

 

Let us remind the notion of β -reduction. 

),,(][...{ 11 kk tttxx Kλβ <=
 

,,/{ 11 Kxtt  ,|}/
i

Vxxt ikk α∈>    

,, Typest ii i
∈Λ∈ αα

 
)}.1(,,1 ≥= kki K  Term

 
),]([... 11 kk tttxx Kλ

 
is called β -redex, and 

}/,,/{ 11 kk xtxtt K  – its bundle. We will say, that term t′  is 

obtained from term t  by one-step β -reduction ),( tt ′→β  if 

,, ττ ′≡′≡ tttt  τ  is β -redex, and τ ′  – is its bundle, where τt  
is denoted by term t

 
with some  fixed occurrence of sub-term 

,τ
 
and τ ′t

 
– term, obtained from substitution of the particular 

occurrence of sub-term τ
 
with term .τ ′  We will say, that 

term t′  is obtained from term t  by β -reduction 

),( tt ′→→β  if  either ,tt ′≡  or exists a sequence of terms 

)0(,,1 ≥ktt kK  for which .1 tttt k ′→→→→ ββββ K
 
 

 

Let us remind the notion of δ -reduction. Let 

fttf k |),,({ 1 ><=∆ τK  is a constant, )0(,, 1 >ktt kKτ  are 

terms and either τ  – is constant and ),( 1 kttf K is constant 

term with value ,τ  or τ  – is a sub-term of term ),( 1 kttf K  

and }.),( 1 τ~ttf kK
 
Any recursive subset δ   of set ∆   is 

defined as notion of δ -reduction. If ,, δττ >∈′<  then τ  is 

noted to be δ -redex, and τ ′  – its bundle. We will say, that 

term t′  is obtained from term t  by one-step δ -

reduction )( tt ′→δ , if ττ ′≡′≡ tttt ,  and τ  is δ -redex, and 

τ ′  – its bundle. We will say, that term t′  is obtained from t  

by δ -reduction ),( tt ′→→δ  if either ,tt ′≡  or exists a 

sequence of terms )0(,,1 ≥ktt kK
 

for which 

.1 tttt k ′→→→→ δδδδ K  

 

The notion of δβ ∪ -reduction will be denoted by .βδ
 
The  

βδ -reduction will be called just reduction, βδ -redex will be 

called just redex,  one-step βδ -reduction will be denoted by 

→ , and βδ -reduction – →→ . The term not containing 

redexes is referred as normal form. The set of all normal 
forms is denoted by .NF  
 

Let us denote 0∆   as the following subset of the set ∆ : 

∆>∈<><=∆ ττ ),,(|),,({ 110 kk ttfttf KK , where τ  is 

either a constant, or )}1( kiti ≤≤≡τ . The notion of δ -

reduction will be called natural, if: 

1. ;0∆⊂δ  

2. δ  – is a single-valued relation, i.e. if δτ >∈< 1,t  and 

,, 2 δτ >∈< t  then ,21 ττ ≡  where ;,, 21 Λ∈ττt  

3. for each constant term ),( 1 kttf K  with value ,Mm ∈  

,),( 1 mttf k →→K  where f  is a constant and 

.,1 Λ∈ktt K  

In [3] is given a notion of substitutionability and inheritability 

of δ -reduction. It is also proved, that 

ttNFtttttt ′′≡′⇒∈′′′′′→→′→→ ,,,  for any terms tt ′,  and 

,t ′′  if and only if the δ -reduction is natural and featured with 

substitutionability and inheritability. Further, we will consider 

only these δ -reductions. 

 

2. INTERPRETATION ALGORITHMS  
Let us introduce the notion of an interpretation algorithm .A  

Having received a program P  of form (1) and a term )(1 mF
 

)( kMmwhere ∈  on its input, the algorithm A  either 

terminates with the result  Mm ∈  or works endlessly. The 

algorithm A  uses following three kinds of operations: 

1. substitution of terms nττ ,,1 K  for some free occurrences 

of variables nFF ,,1 K  respectively; 

2. a one-step β -reduction; 

3. a one-step δ -reduction. 

Let A  be an interpretation algorithm and P  a program. The 

set ),(Proc PA  which corresponds the procedural semantics 

which uses the interpretation algorithm ,A  we will define the 

following way: |,{)(Proc ><= mmPA  algorithm A  on P  

and )(1 mF  terminates with a result ,≠⊥m  where ,k
Mm ∈

  
}.Mm ∈  We will say, that the procedural semantics which 

uses the interpretation algorithm  A  is consistent, if 

)()(Proc PFixPA ⊂  is true for any program .P  

In [4] is proven the following theorem (on consistency). The 
procedural semantics which uses any interpretation algorithm 
is consistent. 
We will describe seven interpretation algorithms. 
 
Algorithm ACT (active). 
Input:  program ,P  term t . 

Output: term ),(ACT tP  if ACT  is defined on P  and .t  



1. if NFt ∈  and =∩ },,{)(FV 1 nFFt K  Ø,  then ,t  else go 

to 2; 

2. let ><≡ iFtt , where iF  is the leftmost occurrence of 

variables { }nFF ,,1 K  in term ,t  and this particular 

occurrence is on the left of the leftmost redex of the 

term ,t  then ),,(A >< itPCT τ else go to 3; 

3. if ),,]([ 11 kk ttxxtt KK τλ≡  and ),,]([ 11 kk ttxx KK τλ  is the 

leftmost redex of the term ,t  then 

),,(ACT }/),(,,/),({ 11 kk xtPACTxtPACTtP Kτ  else go to 4; 

4. if τtt ≡  and τ – is the leftmost δ -redex, then 

),,(ACT τ ′tP  where τ ′ – is the bundle of the redex .τ  

 
 
Algorithm PAS (passive). 

Input:  program ,P  term t . 

Output: term ),(P tPAS  if PAS  is defined on P  and .t  

1. if NFt ∈  and =∩ },,{)(FV 1 nFFt K  Ø,  then ,t  else go 

to 2; 

2. let ><≡ iFtt , where iF  is the leftmost occurrence of 

variables { }nFF ,,1 K  in term ,t  and this particular 

occurrence is on the left of the leftmost redex of the 

term ,t  then ),,(P >< itPAS τ else go to 3; 

3. if ),,]([ 11 kk ttxxtt KK τλ≡  and ),,]([ 11 kk ttxx KK τλ  is the 

leftmost redex of the term ,t  then 

),,(PAS }/,,/{ 11 kk xtxttP Kτ  else go to 4; 

4. if τtt ≡  and τ – is the leftmost δ -redex, then 

),,(PAS τ ′tP  where τ ′ – is the bundle of the redex .τ  

 
 
Algorithm FS (full substitution). 

Input:  program ,P  term t . 

Output: term ),(FS tP  if FS  is defined on P  and .t  

1. if NFt ∈  and =∩ },,{)(FV 1 nFFt K  Ø,  then ,t  else if  

,NFt ∉  go to 2, else go to 3; 

2. let τtt ≡  and τ  is leftmost redex, then ),,(FS τ ′tP  

where τ ′  is bundle of the redex ;τ  

3. let ><≡
sii FFtt ,,

1
K , where 

sii FF ,,
1
K  are all 

occurrences of variables { }nFF ,,1 K  in term ,t  then 

).,,,(FS
1

><
siitP ττ K  

 
The free occurrence of variable in a term will be called 
internal, if it is not a part of the applicator the area of 
influence of which includes a free occurrence of a variable. 
The free occurrence of a variable in a term will be called 
external, if it is not a part of an area of an influence of an 
applicator which contains a free occurrence of a variable. 
 
Algorithm PES (parallel external substitution). 
Input:  program ,P  term t . 

Output: term ),(PES tP  if PES  is defined on P  and .t  

1. if NFt ∈  и =∩ },,{)(FV 1 nFFt K  Ø,  then ,t  else if  

,NFt ∉  go to 2, else go to 3; 

2. let τtt ≡  and τ  is the leftmost redex, then ),,(PES τ ′tP  

where τ ′  is bundle of the redex ;τ  

3. let ><≡
sii FFtt ,,

1
K , where 

sii FF ,,
1
K  are all external 

occurrences of variables { }nFF ,,1 K  in term ,t  then 

).,,,(PES
1

><
siitP ττ K  

 

Algorithm PIS (parallel internal substitution). 

Input:  program ,P  term t . 

Output: term ),(PIS tP  if PIS  is defined on P  and .t  

1. if NFt ∈  and =∩ },,{)(FV 1 nFFt K  Ø,  then ,t  else if  

,NFt ∉  go to 2, else go to 3; 

2. let τtt ≡  and τ  is the leftmost redex, then ),,(PIS τ ′tP  

where τ ′  is bundle of the redex ;τ  

3. let ><≡
sii FFtt ,,

1
K , where 

sii FF ,,
1
K  are all internal 

occurrences of variables { }nFF ,,1 K  in term ,t  then 

).,,,(PIS
1

><
siitP ττ K  

 
Algorithm LES (left external substitution). 

Input:  program ,P  term t . 

Output: term ),(SEL tP  if LES  is defined on P  and .t  

1. if NFt ∈  and =∩ },,{)(FV 1 nFFt K  Ø,  then ,t  else if  

,NFt ∉  go to 2, else go to 3; 

2. let τtt ≡  and τ  is the leftmost redex, then ),,(LES τ ′tP  

where τ ′  is bundle of the redex ;τ  

3. let ><≡ iFtt , where iF  is the leftmost external 

occurrence of variables { }nFF ,,1 K  in term ,t  then 

).,(LES >< itP τ  

 
Algorithm LIS (left internal substitution). 

Input:  program ,P  term t . 

Output: term ),(SIL tP  if LIS  is defined on P  and .t  

1. if NFt ∈  and =∩ },,{)(FV 1 nFFt K  Ø,  then ,t  else if  

,NFt ∉  go to 2, else go to 3; 

2. let τtt ≡  and τ  is the leftmost redex, then ),,(LIS τ ′tP  

where τ ′  is bundle of the redex ;τ  

3. let ><≡ iFtt , where iF  is the leftmost internal 

occurrence of variables { }nFF ,,1 K  in term ,t  then 

).,(LIS >< itP τ  

 

3. UNIVERSAL SYSTEM OF 

INTERPRETATION (USI) 
Here is described the implementation of universal system of 
interpretation of strongly type functional programs of form 
(1). In section 3.1 will be given the notion of semantic tree 
and an algorithm for generating a semantic tree for a given 
term. In section 3.2 will be described the implementation of 
USI. 
 

3.1. Semantic Tree 
Let us denote 0),...,,,( 1 ≥kTTvalueNode k  

as a semantic tree, 

where kTT ...,,1  
are its semantic sub-trees, and the value  is 

one of the following: 

1. ,cvalue =  where c  is constant and ;0=k  

2. ,xvalue =  where x  is variable and ;0=k  

3. ,napplicatiovalue =  where ;2≥k  

4. ,nabstractiovalue =  where ,2≥k
 11 ...,, −kTT  are 

semantic trees with ,xvalue =  where x  is variable. 

 



Given the term ,t  algorithm TREE returns corresponding 

semantic tree .T  

Algorithm TREE 

Input:  term t . 

Output: semantic tree .T  

1. if ,ct ≡  then );(cNode  

2. if ,xt ≡  then );(xNode  

3. if ),,...,( 1 nttt τ≡  then ),(,( τTREEnapplicatioNode
 

));(...,),( 1 ntTREEtTREE  

4. if ],[,...,1 τλ nxxt ≡  then ,( nabstractioNode
 

));(),(...,),( 1 τTREExTREExTREE n  

Reductions and substitutions on semantic tree are defined the 

following way: let .,, tttt ′→Λ∈′  We will say, that tree 

)(tTREET ′=′  is obtained from tree )(tTREET =  using one-

step reduction. The similar way is defined reduction 

operation. Let ,, Λ∈′tt  },/,...,/{ 11 kk xxt ττ′  ,
ii ατ Λ∈  

,
i

Vxi α∈  ,Typesi ∈α .1,,...,1 ≥= kki  We will say, that tree 

)(tTREET ′=′  is obtained from tree )(tTREET =  using 

substitution of occurrences of variables .ix  

 
Given the semantic tree ,T  algorithm TYPE returns the type 

of the term t  for which ).(tTREET =  

Algorithm TYPE 

Input:  semantic tree )....,,,( 1 kTTvalueNodeT =  

Output: ,α where αΛ∈t  and ).(tTREET =  

1. if ,cvalue = αΛ∈c  is constant then ;α  

2. if ,xvalue = αΛ∈x  is variable then ;α  

3. if ,napplicatiovalue = ,,...,1),( kiTTYPE ii ==α
 
and  

]...[ 21 βααα →××= k  
then ;β  

4. if ,nabstractiovalue =  ,,...,1),( kiTTYPE ii ==α  then 

]....[ 11 kk ααα →×× −  

 

3.2. Implementation of the System 
Given the program P  and terms m

 
the system generates 

semantic trees for terms )(1 mF  and .,...,1 nττ  The lexical 

analyzer tokenizes terms nmF ττ ,...,),( 11  into lexemes and 

checks for the correctness of braces. These lexemes are 
processed by semantic analyzer and following semantic trees: 

)),(( 1 mFTREET =
 

),( ii TREET τ=
 

ni ...,,1=
 
are generated 

using the algorithm TREE. The strong type correctness of the 
program P  is checked using algorithm TYPE by ensuring 

that ),( ii TTYPE=α ....,,1 ni =  The USI starts the 

interpretation from the tree .T
 

The system iteratively 

performs reduction and substitution operations over the 
semantic tree based on the chosen interpretation algorithm 

and terminates with a result MmmNode ∈),(  or works 

endlessly. 
 
The interpretation algorithms: ACT, PAS, FS, PIS, PES, LIS 
and LES described in section 2 are implemented in the USI. 
The system provides step-by-step tracing and automatic 
termination of execution if maximum number of iteration is 
elapsed. The system also provides comparison engine for 
algorithms. Having a program P  and chosen multiple 
interpretation algorithms the system simultaneously interprets 
the program using chosen interpretation algorithms. In the 
system there are implemented serialization facilities for 
persisting programs and with ability of loading them further. 
 

The system Graphical User Interface (GUI) provides 
functionality of constructing terms, programs, program inputs 
and controlling the interpreter. During the interpretation the 
GUI outputs interpretation progress and graphically renders 
the semantic tree to the screen. It also provides facilities for 
step-by-step interpretation. 
 
The USI was implemented on C# language based on 
Microsoft .NET Framework 2.0. The GUI was developed 
using Windows Forms 2.0 library. 
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