Universal System of Interpretation of
Strongly Typed Functional Programs

Ruben Hakopian

Yerevan State University
Yerevan, Armenia
e-mail: ruben.hakopian @ gmail.com

ABSTRACT

The paper is devoted to implementation of universal system of
interpretation of strongly typed functional programs, which
uses following seven algorithms: active, passive and
algorithms based on reduction to normal form and full,
parallel external, parallel internal, left external and left
internal substitutions.

Keywords
Interpretation system, strongly typed, functional program,
interpretation algorithm.

1. DEFINITIONS AND RESULTS USED

Let us give definitions used in the paper. Most of them can be
found in [1], [2] and [3].

Let M be a partially ordered set, which has a least element
1, and each element of M is comparable with itself and L

only. Let us define the set types Types:

1. M e Types;

2. if B,aq,...,04 € Types (k >0), then the set of all
monotomic mappings from ¢, x...x ¢ into §
(denoted by [X...x ¢ — B]) belongs to Types.

Let a e Types. The order of the type o is a natural number

(defined as ord()), where:

1. if a=M, then ord(x)=0;

2. if a=[ax..xa, — B, then ord(a) =
max(ord(ay),...,ord (0y.),ord (f)) +1.

For each a e Types we will have a countable set of variables

V, of type a. If the variable xeV, and constant ce a,

then ord(x)= ord(c)=ord(e). Let us define the set of

terms: A= UA“ , where A, - is set of terms of type «,

aeTypes

the following way:

1. if ce @, ae Types, then ce A,;

2. if xeV,, aeTypes, then xe A ,;

3. if t€ Apgx xa—p1 i€ Ng» B.05€ Types,
i=1...k(k>0),then #(1,....t) € Aﬁ and (f1,...,1;)
will be denoted by area of influence of applicator ¢;

4. ifteAg, x;eV,, B.a;e Types, i+ j=x; #x,
i,j=L...k (k>0), then Ax,...x;[r]e Aty xa— Bl

The notions of a free and bound occurrence of a variable in a

term and the notation of a free variable of a term are

introduced in a conventional way. The set of all free variables
of aterm ¢ is denoted by FV(z). Terms ¢, 7, are said to be

congruent (which is denoted by # =¢,) if one term can be

obtained from the other by renaming bound variables. In what
follows, congruent terms are considered identical.

Let te A, 1€ Aa[, xieVa[, a;€ Types, i#j=x; #xj,
i,j=1,..k (k>0). The simultaneous substitution of the
terms #,....t; for some of free occurrences of the variables

Xq....,X; respectively, into term ¢ will be admissible, if all

considered free variables of the term being substituted remain
free after substitution. Term 7, where some of free

occurrences of the variables x,,...,x; are interested is denoted
by 1< Xipoeoon X > Xj € {x,....x;), j=1,...,s. The term

obtained from a term ¢<ux;,..x > as a result of
s

substitution of terms Ly seensl for occurrences of the variables

1
g

X:

iy oo X, respectively will be denoted by [<tj,li >,

ls
The term obtained from a term ¢ as a result of substitution of
terms t#,...4; for all free occurrences of variables xj,..., x;

respectively will be denoted by #{z;/ x;,....t; / x; }.

For each term re A, we will correspond a constant

Valyo(t)e a, ae Types, where FV (@) c{ys-csyn}s

= 0 0 0
Yo=<V1s-sYn > Vi € &, aieTypes,

i=1,...,n(n>0), thefollowing way:

Vi€Vgs

1. if t=¢, cea, then Valyo(t):c;

2. if t=x, xeV,, then Val;o(t):y?, where x = y;,
i=1...,n(n>0);

3. if r=2(t)€ Ngy TE Mg xay—alr i€ Mg
o; € Types, i=1,..,k (k=1), then Val;o(r(tl,...,tk))z
Valy, ()Valy, (1).....Vals, (1;)):

4. if 1= A T1€ Apgw s —p1 TE A %€V,

B.a; e Types, i=1,....k (k>1), then

Valy, (Ax..x;[T]): &g X...X ¢ — B and for any

Xo=<x...x0> xleaq, i=1,...k will have

Valy, (Axy..x; [T1)(Xg) = Val; 5, (7) , where

—
XoYo

= 0 0
FV(Axp.x (7D = (e b Yo =< Vijsee i, >-

m

Let 1,1, be terms and FV(t)UFV(ty)={ys--» Y}
yieVal, o; € Types, i=1,...n(n20). Terms 1,1, will be

called equivalent (denoted by 7 ~t,), if for any

Yo =< ylo,...,y,? >, where y?e @, i=1,...,n, it is true
Val;o (1) =Val§0 (ty). Let re Ay, aeTypes, FV(t)c
{(yse-s v}y yi€ Val, a; € Types, i=1,...n (n=0). Term
¢t will be called constant term with be value, if for any
i=1,..,n we have

= 0 0 0
Yo=<V1s-sYn > Vi € &,

Valyo (t)=b. Further we will consider terms, which do not
use constants with order > 2.

A strongly type functional program P is a system of
equations of the form

=7
. (D
Fﬂ :Tﬂ ’
where FieVy, izj=>F#F;, 7€ Ay,
FV(t))c{F,....F,}, a;eTypes, i, j=L...,n(n21), all

used constants have an order <1, constants of order 1 are
computable mappings and o =[M K M1(k=1). The

mapping
¥p(g)=<Valg(7)),....Valg(7,)> and geogx..xq, wil

Ypio X.. X, = o X...Xa,, where

be called a mapping corresponding the program (1). By

th

(8);, i=1,...,n we will denote {"" component of the vector

g. We will say that f € o X...xa, is the solution of the
program (1), if ‘I’P(f):f. In [1] it is proved that any
program (1) has a least solution. The equation Fj =7, is

called the main equation of program P, and the function
fp=(f); — the fixpoint semantics of the program P, where

f s the least solution of the program P. The set Fix(P),
which corresponds to fixpoint semantics of the program P, is

defined the following way: Fix(P) =

(<m,m>|fp(m)=m, me MX, me M}.

Let wus remind the notion of B -reduction.
L=< o xi [,), Hty/xp, Gl }>1xG eV,
;€ Ay, a; € Types, i=1...k(k=2D}. Term

Ay x [0t 1) is called P -redex, and
t{ty/ x1,...,1; / x; } — its bundle. We will say, that term ¢” is
obtained from term ¢ by one-step f-reduction (t -4), if
t=t;,t'=ty, 7 is f-redex, and 7" —is its bundle, where 7,
is denoted by term ¢ with some fixed occurrence of sub-term
7, and ¢, — term, obtained from substitution of the particular

occurrence of sub-term ¢ with term 7. We will say, that
by S -reduction

’

term ¢ is obtained from term ¢
(t—>—> Vi t’), if either r=¢, or exists a sequence of terms

1.ty (k20) forwhich t > 1, 54 ... 214 —p t.

Let wus remind the notion of ¢ -reduction. Let

A={< f(t,...ty),c>1 f is a constant, 7,f,...t; (k>0) are
terms and either 7 — is constant and f(f,...t;) is constant
term with value 7, or 7 —is a sub-term of term f(z,...1;)
and f(f,...5;)~7}. Any recursive subset J of set A is
defined as notion of & -reduction. If <7,7">e §, then 7 is
noted to be & -redex, and 7” — its bundle. We will say, that

term (is obtained from term ¢ by one-step &-
reduction(t »5 ¢), if r=1,,/'=t and 7 is §-redex, and
7’ —its bundle. We will say, that term ¢ is obtained from ¢
by &-reduction (r—>—451t’), if either r=¢, or exists a
sequence of terms Hseosty (K20) for which

o5t >s5... 25t s t.

The notion of S U § -reduction will be denoted by 6. The
S0 -reduction will be called just reduction, o -redex will be
called just redex, one-step ¢ -reduction will be denoted by
—>, and f¢ -reduction — —>—>. The term not containing

redexes is referred as normal form. The set of all normal
forms is denoted by NF.

Let us denote A(, as the following subset of the set A :

Ag={< f(1,...1p). T> < f(1;,..1,),t> A, where T is

either a constant, or 7=¢; (1<i<k)}. The notion of -

reduction will be called natural, if:

1. JdcAgp

2. § - is a single-valued relation, i.e. if <#,7; > 0 and
<t,1, >€ 0, then 7, =7,, where 1,7,7, € A;

3. for each constant term f(#,...t;) with value me M,

f(t,...ty,) >—>m, where f is a constant and

f,...lp € A.
In [3] is given a notion of substitutionability and inheritability
of o -reduction. It is also proved, that

t—>—t t—>—>t", ,t"e NF =t =t" for any terms t,t’ and
¢, if and only if the § -reduction is natural and featured with

substitutionability and inheritability. Further, we will consider
only these ¢ -reductions.

2. INTERPRETATION ALGORITHMS

Let us introduce the notion of an interpretation algorithm A.
Having received a program P of form (1) and a term F;(m)

(where me M*) on its input, the algorithm A either

terminates with the result me M or works endlessly. The

algorithm A uses following three kinds of operations:

1. substitution of terms 7,...,7, for some free occurrences
of variables Fi,...,F, respectively;

2. aone-step [-reduction;

3. aone-step ¢ -reduction.

Let A be an interpretation algorithm and P a program. The
set Proc 4 (P), which corresponds the procedural semantics
which uses the interpretation algorithm A, we will define the
following way: Proc,(P)={<m,m>| algorithm A on P

and Fj(m) terminates with a result m #1, where me M k,

me M}. We will say, that the procedural semantics which

uses the interpretation algorithm A is consistent, if
Proc ,(P) c Fix(P) is true for any program P.

In [4] is proven the following theorem (on consistency). The
procedural semantics which uses any interpretation algorithm
is consistent.

We will describe seven interpretation algorithms.

Algorithm ACT (active).
Input: program P, term ¢.

Output: term ACT(P,t) if ACT is defined on P and ¢.

1. if te NF and FV(t)n{F,....,F,}= @, then ¢, else go
to 2;

2. let t=t<F, >, where F; is the leftmost occurrence of
variables {Fl,...,Fn} in term 7, and this particular

occurrence is on the left of the leftmost redex of the
term ¢, then ACT(P,t<1; >),else goto 3;

3. if U= 100 021 ty) and Ax;...x; [7](1},....1;) is the
leftmost redex of the term t, then
ACT(P, to{ACT (P 1)1 x,,...ACT(P,1;) x,})s €lS€ 8O 104

4. if r=¢, and 7- is the leftmost § -redex, then
ACT(P, t,7), where 7”— is the bundle of the redex 7.

Algorithm PAS (passive).
Input: program P, term ¢.

Output: term PAS(P,t) if PAS is defined on P and ¢.
1. if te NF and FV()N{F,....F,}= @, then 1, else go
to 2;

2. let t=t<F, >, where F; is the leftmost occurrence of
variables {Fl,...,Fn} in term ¢, and this particular
occurrence is on the left of the leftmost redex of the
term ¢, then PAS(P,t<7;>),else goto 3;

3. if U= 100 (21 ty) and Ax;...x; [7](1},....1;) is the
leftmost redex of the term t, then
PAS(P, 17,

4. if r=¢, and 7- is the leftmost § -redex, then
PAS(P, t,/), where 7"~ is the bundle of the redex 7.

Ity] %, s else goto 4;

Algorithm FS (full substitution).
Input: program P, term ¢.

Output: term FS(P,r) if FS is defined on P and 1.
1. if te NF and FV(t)N{F,....,F,}= @, then 1, else if
te NF, goto 2,else go to 3;
2. let t=¢, and 7 is leftmost redex, then FS(P,t,),
where 7" is bundle of the redex z;
3. let tEt<Fila---aFis >, where F;,.. F

3 i, are all
occurrences of variables {Fl,...,Fn} in term ¢, then

FS(P,t<ril,...,rig >).

The free occurrence of variable in a term will be called
internal, if it is not a part of the applicator the area of
influence of which includes a free occurrence of a variable.
The free occurrence of a variable in a term will be called
external, if it is not a part of an area of an influence of an
applicator which contains a free occurrence of a variable.

Algorithm PES (parallel external substitution).
Input: program P, term ¢.

Output: term PES(P,) if PES isdefined on P and t.
1. if te NF nu FV()n{F,....F,}= @, then 1, else if
te NF, goto 2, else goto 3;
2. let t=t, and 7 is the leftmost redex, then PES(P, 1),

where 77 is bundle of the redex 7;

3. let tst<Fl»l,...,1‘~"iS >, where Fil,...,FiS are all external

occurrences of variables {Fl,..., Fn} in term ¢, then
PES(P, 1< 1 ,....T; >).

Algorithm PIS (parallel internal substitution).
Input: program P, term ¢.

Output: term PIS(P,) if PIS is defined on P and 1.
1. if te NF and FV(t)N{F,....F,}= @, then ¢, else if
te NF, goto 2, else goto 3;

2. let =1, and 7 is the leftmost redex, then PIS(P, 1),
where 7" is bundle of the redex z;

3. let r=1< Fil’."’F‘is >, where Fil’."’F‘is are all internal
occurrences of variables {Fl,...,Fn} in term ¢, then
PIS(P, <7 ,....7; >).

Algorithm LES (left external substitution).
Input: program P, term ¢.

Output: term LES(P, r) if LES is defined on P and 7.
1. if te NF and FV(t)N{F,....F,}= @, then 1, else if
te NF, goto 2, else goto 3;

2. let r=1, and 7 is the leftmost redex, then LES(P, t,/),
where 7" is bundle of the redex z;

3. let r=r<F;>, where F; is the leftmost external
occurrence of variables {F,...,F,} in term ¢, then
LES(P,t<7; >).

Algorithm LIS (left internal substitution).
Input: program P, term ¢.

Output: term LIS(P, ¢) if LIS is defined on P and ¢.
1. if te NF and FV(t)N{F,....,F,}= @, then 1, else if
te NF, goto 2, else goto 3;

2. let r=1, and 7 is the leftmost redex, then LIS(P, 1),
where 77 is bundle of the redex 7;

3. let r=r<F;>, where F; is the leftmost internal
occurrence of variables {Fl,...,Fn} in term ¢, then
LIS(P,t<7; >).

3. UNIVERSAL SYSTEM OF
INTERPRETATION (USI)

Here is described the implementation of universal system of
interpretation of strongly type functional programs of form
(1). In section 3.1 will be given the notion of semantic tree
and an algorithm for generating a semantic tree for a given
term. In section 3.2 will be described the implementation of
USL

3.1. Semantic Tree
Let us denote Node (value,Ty,...,T},), k 20 as a semantic tree,

where Tj,...,T; are its semantic sub-trees, and the value is

one of the following:
1. value=c, where c is constant and k =0;

2. value= x, where x is variable and k =0;
3. value=application, where k >2;
4. value = abstraction, where k22, T,...T,_; are

semantic trees with value = x, where x is variable.

Given the term ¢, algorithm TREE returns corresponding
semantic tree T.
Algorithm TREE
Input: term 7.
Output: semantic tree 7.
1. if t=c, then Node(c);
2. if t=x, then Node(x);
3. if r=7(t,...1,), then Node (application, TREE(7),
TREE(t), ..., TREE(t,));
4. if t=Axq,..., x,[7], then Node (abstraction,
TREE(xy), ..., TREE(x,), TREE(7));
Reductions and substitutions on semantic tree are defined the
following way: let r,f'e A,t— 1. We will say, that tree
T’ =TREE(¢)) is obtained from tree T =TREE(r) using one-
step reduction. The similar way is defined reduction
operation. Let rr'e A, {r/x,....T4/x,}, 7€ Ag,
X; € Va, , a;€Types, i=1,...k,k>1. We will say, that tree

T’=TREE(t) is obtained from tree T =TREE(t) using
substitution of occurrences of variables x;.

Given the semantic tree 7', algorithm TYPE returns the type
of the term ¢ for which T'=TREE (t).

Algorithm TYPE
Input: semantic tree T = Node (value,Ty,...,T},).

Output: o, where te A, and T =TREE ().

1. if value =c, ce A, is constant then a;

2. if value=x, xe A, is variable then a;

3. if value=application, o =TYPE(T}), i =1,....,k, and
o =[ap X...xay — B then f;

4. if value=abstraction, o; =TYPE(T};), i=1,...,k, then

[og X..x0_1 = o]

3.2. Implementation of the System
Given the program P and terms m the system generates

semantic trees for terms F(m) and 7,...,7,. The lexical

-
analyzer tokenizes terms Fj(m),7,...,7,, into lexemes and
checks for the correctness of braces. These lexemes are
processed by semantic analyzer and following semantic trees:
T =TREE(F|(m)), T;=TREE(z;), i=1,..,n are generated
using the algorithm TREE. The strong type correctness of the
program P is checked using algorithm TYPE by ensuring
that o; =TYPE(T;), i=1,...n. The USI starts the

interpretation from the tree 7. The system iteratively
performs reduction and substitution operations over the
semantic tree based on the chosen interpretation algorithm
and terminates with a result Node(m),me M or works

endlessly.

The interpretation algorithms: ACT, PAS, FS, PIS, PES, LIS
and LES described in section 2 are implemented in the USL
The system provides step-by-step tracing and automatic
termination of execution if maximum number of iteration is
elapsed. The system also provides comparison engine for
algorithms. Having a program P and chosen multiple
interpretation algorithms the system simultaneously interprets
the program using chosen interpretation algorithms. In the
system there are implemented serialization facilities for
persisting programs and with ability of loading them further.

The system Graphical User Interface (GUI) provides
functionality of constructing terms, programs, program inputs
and controlling the interpreter. During the interpretation the
GUI outputs interpretation progress and graphically renders
the semantic tree to the screen. It also provides facilities for
step-by-step interpretation.

The USI was implemented on C# language based on
Microsoft .NET Framework 2.0. The GUI was developed
using Windows Forms 2.0 library.

REFERENCES

[1] S.A. Nigiyan, “Functional Languages”, Programming and
Computer Software, Vol. 17, pp. 290-297, 1992.

[2] S.A. Nigiyan, “On Interpretation of Functional
Programming Languages”, Programming and Computer
Software, Vol. 19, N 2, pp. 71-78, 1994.

[3] L.E. Budaghyan, “On Formalizing of Notion of & -
reduction in Monotomic Models of Typed A -calculus”, YSU:
Uchenie Zapiski, N 1, pp. 27-36, 2000 (in Russian).

[4] R.Y. Hakopian, “On Procedural Semantics of Strongly
Typed Functional Programs”, YSU: Uchenie Zapiski, N 3, pp.
59-70, 2008 (in Russian).

[5] M. Michaelis, “Essential C# 2.0 (Microsoft .NET
Development Series)”, Addison-Wesley, 2006.

