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ABSTRACT 
In this article it is shown, the existence of a low computably 

enumerable (c.e.) T-degree u  such that if  v is  a c.e.              

T-degree and u ≤ v  then v contains wtt -mitotic  but non-   

tt -mitotic set. 

 

 

We shall use notions and terminology introduced in [5], [6]. 

The definitions of tt - and wtt - reducibilities are from [5]. 

 

Definition. The order pair << kxx ,,1 L >, α >, where 

 < kxx ,,1 L > is a k -tuple of integers and α  is a k -ary 

Boolean function ( 0>k ) is called a truth-table condition    

(or tt -condition) of norm k . The set { kxx ,,1 L } is called 

the associated set of  the tt -condition.  

Definition. The tt -condition << kxx ,,1 L >,α >, is satisfied 

by A  if ( ) 1)(,),( 1 =kAA xcxc Lα , where Ac  is characteristic 

function for  A . 

 

Each tt -condition is a finite object; clearly an effective 

coding can be chosen which maps all tt -conditions (of 

varying norm) onto ω . Assume henceforth that a particular 

such coding has been chosen. Where we speak of               

“ tt -condition x ”, we shall mean the tt -condition with the 

code number x . 

    

Definition. A is truth-table reducible to B  (notation: 

BA tt≤ ) if there is a computable function f  such that for all 

x , [ ttAx ⇔∈ -condition )(xf  is satisfied by B ]. We also 

abbreviate “truth-table reducibility” as “ tt -reducibility”. 

    

Definition. A is weak truth-table reducible to B (notation:  

BA wtt≤ ) if ( z∃ )[ B
zAc ϕ=  ( ∃  and  computable f )  

( x∀ )[ )(xfD contains all integers whose membership in B  is 

used in the  computation of )(x
B
zϕ ]]. 

 

Definition. A c.e. set is  tt - mitotic ( wtt - mitotic) set if it is 

the disjoint  union  of two c.e. sets both of the same tt -degree 

( wtt -degree) of unsolvability.  

 

Let us modify notations defined in [4] with the purpose to 

adapt them to our theorem. 

 

Let BA tt≤  and )( x∀ [ ttAx ⇔∈ -condition )(xf  is satisfied 

by B ] and  fn =ϕ . Then we say that BA tt≤  by nϕ . 

 

Define  ( )1010 ,,, ϕϕAA  is [ ]ttAsplitttec ≤− ;..  if the 

following  hold:  

0A  and 1A  are c.e., AAA =∪ .10 , ∅=∩ .10 AA , 0AA tt≤  

by 0ψ  and 1AA tt≤  by 1ψ . 

 

Let h  be a recursive function from ω  onto 
4ω . 

Define ( iiii ZY ψϑ ,,, ) to be a quadruple  (
321

,,, iiii WW
o

ϕϕ ), 

where ),,,()( 3210 iiiiih = . If  A  is c.e. then we say that the 

non- tt -mitotic condition of i  order is satisfied  for A , if it is 

not the case  ( iiii ZY ψϑ ,,, ) is [ ]ttAsplitttec ≤− ;.. . 

 

Definition. ( iiii ZY ψϑ ,,, ) is threatening  A  through x  at 

stage s , if  following hold: 

(i)    si ≤ , 

(ii)  ( )↓↓∀ ≤ )(&)()( yyx s
i

s
iy ψϑ  and 

0))(,),(( 1 =
iii kZZi xcxc Lα  and 

0))(,),(( 1 =
iii nZZi ycyc Lβ , 

(iii)   ∅=∩ s
i

s
i ZY , 

(iv)   ))(()( mZYmA
s
i

s
i

s ∩=  for all },,max{
ii nk yxsm ≤ , 

where =)(yiϑ << 
ikxx ,,1 L >, iα >,  

=)(yiψ << 
inyy ,,1 L >, iβ > . 

 

In [3] it is proved that there is a low c.e. T-degree u such that 

if  v is  a c.e.   T-degree and u ≤ v  then v  is not completely 

mitotic. 

 

Theorem. There exists a low c.e. T-degree u such that if  v is  

a c.e.   T-degree and u ≤ v then v contains wtt -mitotic  but 

non- tt -mitotic set. 

Proof. This statement is proved using a finite injury priority 

argument. We construct a member U  of u  in stages s , 

ss
UU U ω∈

= . We also construct sets ω∈eeV }{  to witness that 

each c.e. T-degree in upper cone of u  contains a wtt -mitotic 

but non-tt-mitotic set. 

 

Denote 010
\=},=)(2:{= ωωωω xyyx ∃ . 



Construct U , ω∈eeV }{  to satisfy, for all ω∈e , the 

requirements: 

↓)(}{: eeN
U

e  has a limit in s , the stage. 

eV

ee WP Λ=:  for some computable functional .Λ  

〉〈 ieR , : The non-tt-mitotic condition of order i  is 

satisfied  for eV . 

We also ensure by permitting that eTe WUV ⊕≡  and else 

10
ewtte VV ≡  (where 1100 =&= ωω ∩∩ eeee VVVV ). 

 

If  eT WU ≤  then the above ensure that eTeTe WWUV ≡⊕≡  

and eV  is not tt-mitotic. Hence, )( eWdeg  is not tt-mitotic but 

is wtt -mitotic, and )(= Udegu  is the required degree. 

 

Let 〈  , 〉  be computable bijective pairing function increasing 

in both coordinates. At each stage s  place markets ),,( sxeλ  

on elements of seV , . Values of λ  will be used both as 

witnesses to prevent the tt-mitoticity of eV  sets (by 

corresponding  iiii ZY ψϑ ,,, ) and to ensure that eW  is        

T -reducible to eV . Initially 2)1),4(=,0),( −+〉〈 xexeλ  for 

all ω∈xe, . 

 

Also define a function ),,( sieξ  for all ω∈ie,  (at each stage 

s ), iie =,0),(ξ  for all ω∈ie, . We use ξ  to ensure that only 

members of sufficiently large magnitude enter U  at stage s , 

so we can satisfy the lowness requirements eN . 

For all ji <  the requirement iN  takes priority of the iR  

and, naturally, )( ii RN  takes priority of the )( jj RN . 

 

The ω∈eeP }{  do not appear in this ranking.  

eN  requires attention if it is not satisfied and ↓])[(}{ see
U . 

〉〈 ieR ,  requires attention  if it is not  satisfied  and  

( )↓↓∀ ≤ )(&)()( yyx
s
i

s
iy ψϑ ,  where )),,(,(= ssieey ξλ . 

 

We will build ss
UU U=  and sess VV ,=U  for all ω∈e . 

Initially all requirements eN , 〉〈 ieR ,  are declared  unsatisfied. 

 

Construction. 

Stage 0=s . Let ∅=0U , ∅=,0eV   for all ω∈e .  

Stage 1+s . Part A  Act on the highest priority requirement 

which requires attention, if such a requirement exists. 

 

a)  If eN  requires attention then set ( ) ( )ssiesie ,ˆ,ˆ=1,ˆ,ˆ ++ ξξ  

for each eie ≥〉〈 ˆ,ˆ . This action prevents injury to eN  by 

lower priority requirements as we assume that s  bounds 

the use of the halting computation. 

Declare eN  satisfied; declare all lower priority R , N  

unsatisfied. 

  

If 〉〈 ieR ,  doesn’t require attention, then  define )1,,( +sξ  

not specified and  1
*

1,
* ,),1,,( +++ sse UVsλ  to be the same 

as ),,( sξ , ),,( sλ , seV , , sU  respectively and go to Part 

B. 

 

If 〉〈 ieR ,  require attention via  ( )ssieey ),,,(,= ξλ  then set  

2}1,{=
~

,1, −−∪+ yyVV sese  and 1}{=
~

1 −∪+ yUU ss  

b)  If ( iiii ZY ψϑ ,,, ) is threatening 1,

~
+seV  through y  at stage  

1+s  then set  }{
~

1,
*

1, yVV sese ∪= ++ and }{
~

= 11 yUU ss ∪++ . 

Whether ( iiii ZY ψϑ ,,, ) is threatening 1,

~
+seV  through y  at 

stage  1+s  or not define ( ) =1),,,,(* +ssiee ξλ  

( ) ,sssiee ),,ˆ,(, +ξλ   

where =)(yiϑ << 
ikxx ,,1 L >, iα >,  

=)(yiψ << 
inyy ,,1 L >, iβ > , 

},,max{=ˆ
ii nk xxss .  

Such definition of *λ  allow us to satisfy 〉〈 ieR ,  

requirement (after Part A) whether ( iiii ZY ψϑ ,,, ) is 

threatening 1,

~
+seV  through y  or not (if don't take into 

consideration higher priority requirements). 

Declare 〉〈 ieR ,  satisfied; declare all lower priority  NR,  

unsatisfied. 

    

Part B. If sese WWx ,1, \+∈  then  set  

{ } and1),,(= **
1,1, +∪++ sxeVV sese λ  

.jallfor ω1)1),1,,(,(=1),,( * ∈++++++ ssjxeesjxe ξλλ  

  

Find all î  such that 1),,()1),,ˆ,(,( * +≥+ sxessiee λξλ  set and 

declare 
〉〈 ie

R ˆ,
 unsatisfied for each such î . 

 

Define 1),,( +sλ  not specified in part B  above to be the 

same as 1),,(* +sλ . 

Note that for all ),,(, sies ξ is increasing in both  e  and i . 

 

Verification 

Lemma 1  For all e , i : 

    1.  eN  is met.  

    2.  ),(=),,(lim iesies ξξ  exists.  

    3.  〉〈 ieR ,  is met.  

    4.  ( )ssiees ),,,(,lim ξλ exists.  

Proof. (1) and (2). The proof is similar to Lemma 1 of 

Theorem 2.2.2  [3].  

(3) and (4). By induction on iej ,= . 

Suppose there exists a  stage 0s  such that for all  ie ˆ,ˆ  with 

jie <ˆ,ˆ : 

3.  
〉〈 ie

R ˆ,ˆ
 is met and never acts after stage 0s . 

4. ( )ssiees ),,ˆ,ˆ(,ˆlim ξλ  exists and is attained by stage 0s .  

Then (3) and (4): After 1s  when seW , � =1),( +ieξ  

eW � 1),( +ieξ , then only 〉〈 ieR , can move ( )siee ),,(,ξλ , 

〉〈 ieR ,  then acts at most once and is met, say by stage 12 ss >  

(when ( iiii ZY ψϑ ,,, ) is threatening 
2,

~
seV through y ) because 

of definition of  *λ  (at item a) of Part A) and the fact, that 

( ) ( )ssieesiee s ),,,(,lim),,(, 2 ξλξλ = . 



 

Lemma 2  eTe WUV ⊕≤ .  

Proof. By permitting: in the construction a number k  enters 

eV  only if number less than or equal to k  enters U  or enters 

eW . 

 

Lemma 3  For all e , eP  is satisfied, that is e
V

eW Λ= .  

Proof. To determine whether eWz ∈  we need to find a stage 

such that ),,( szeλ  has attained its limit. eV  computably 

determines ),(,,0),( zee λλ K  (note that ),,( syeλ  changes 

only if a number ),,( syeλ≤  enters eV ). 

Find a stage zs  such that 
z

seV , � ez V=1+γ � ,1+zγ  where 

)},(,,0),({max= zeez λλγ K . Then eWz ∈   iff   
z

seWz ,∈ . 

    

Lemma 4  eV  is wtt -mitotic.  

Proof. a) Prove 10
 ewtte VV ≤  (and  hence 1

 ewtte VV ≤ ). 

Find a stage s  such that 1
eV � 1

,=1 seVx − � 1−x . Then 

)()( 0
,

0 xVxV see = . 

b) Prove 10
 eTe VV ≤ .  

Find a stage s  such that 0
eV � 0

,=1 seVx + � 1+x . Then 

)()( 1
,

1 xVxV see = . 
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