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ABSTRACT

In this article it is shown, the existence of a low computably
enumerable (c.e.) 7-degree u such that if v is a ce.
T-degree and u <v then v contains wtf -mitotic but non-
tt -mitotic set.

We shall use notions and terminology introduced in [5], [6].
The definitions of #f - and wtt - reducibilities are from [5].

Definition. The order pair << x,,---, x, ®, a >, where
<x,--,x, > is a k-tuple of integers and « is a k -ary

Boolean function (k>0) is called a truth-table condition
(or tt -condition) of norm k . The set { x,,---,x, } is called

the associated set of the tt -condition.

Definition. The f -condition << x,,---,x, >, a >, is satisfied
by A if at(cA (X)), cp(x, ))=1, where ¢, is characteristic

function for A.

Each 1t -condition is a finite object; clearly an effective
coding can be chosen which maps all # -conditions (of
varying norm) onto @ . Assume henceforth that a particular
such coding has been chosen. Where we speak of
“tt -condition x ”, we shall mean the #f-condition with the
code number x .

Definition. Ais truth-table reducible to B (notation:
A<, B) if there is a computable function f such that for all

x, [ xe A1t -condition f(x) is satisfied by B ]. We also
abbreviate “truth-table reducibility” as ““ ¢ -reducibility”.

Definition. A is weak truth-table reducible to B (notation:
A<, B)if (3z)[c, =9f (3 and computable f)

(Vx)[ D, contains all integers whose membership in B is
used in the computation of (pf x) 1.
Definition. A c.e. setis # - mitotic ( wtt - mitotic) set if it is

the disjoint union of two c.e. sets both of the same # -degree
(wit -degree) of unsolvability.

Let us modify notations defined in [4] with the purpose to
adapt them to our theorem.

Let A<, B and (Vx) [ xe A< it -condition f(x) is satisfied
by B]and ¢,=f .Thenwesaythat A<, B by ¢,.

Define (Ag. AL @.0,) s [ce. 1t —split; AS”] if the

following hold:
Ay and A} are ce., AjUA =A, AynA =0,A<, A

by ¥, and A<, A by ¥, .

Let i be a recursive function from & onto @*.

Define (Y;,Z;,9;,y;) to be a quadruple (W,O,Wl-l,(ol-z,(pl-3 ),
where h(i) =(iy,i,i,,i3) . If A is c.e. then we say that the
non- tt -mitotic condition of i order is satisfied for A, if itis
not the case (Y;,Z,,9,,p,)is [cee. 1t —split; AS"].

Definition. (Y;,Z;,8,y;) is threatening A through x at
stage s , if following hold:
i i<s,
(i) (%xe)0 () L&y () 4) and
ai(CZ,- (xl),m,czi (xki ))=0 and
Bilez, (v +e7,(3, ) =0,
(i) Y'nz' =9,
(iv) A(m)=(" NZ])(m) forall m<max{s,x,.y,}.

where & (y)=<< Xpsten Xy, > >,

Y, )=<< y., 9, > 6>

In [3] it is proved that there is a low c.e. 7-degree u such that
if vis ac.e. T-degree and u <v then v is not completely
mitotic.

Theorem. There exists a low c.e. T-degree u such that if v is
ac.e. T-degree and u <v then v contains wtt -mitotic but
non- #t -mitotic set.

Proof. This statement is proved using a finite injury priority
argument. We construct a member U of u in stages s,

U= U U, . We also construct sets {V,} to witness that
sew * ¢

eeE®
each c.e. T-degree in upper cone of u contains a wtt -mitotic
but non-##-mitotic set.

Denote @° ={x:3y2y)=x}, 0 =0\’ .



Construct U, {V,},, to satisfy, for all eew, the
requirements:
N,: {e}U(e) l hasalimitin §, the stage.
P: W, = A’ for some computable functional A.
R, The non-tt-mitotic condition of order i is
satisfied for V,.
We also ensure by permitting that V,=, U @W, and else

vi=, V! (where VO =V, na® &V! =V, na").

e “wit

If U<, W, then the above ensure that V, =, U @W, =, W,
and V, is not #-mitotic. Hence, deg(W,) is not ft-mitotic but

is wit -mitotic, and u = deg(U) is the required degree.

Let ( , ) be computable bijective pairing function increasing
in both coordinates. At each stage § place markets A(e, x,s)
on elements of \7”. Values of A will be used both as
witnesses to prevent the #-mitoticity of V, sets (by
corresponding  Y;,Z,,%,,y,;) and to ensure that W, is
T -reducible to V,. Initially A(e,x,0)=4({e,x)+1)—2) for
all e,xe w.

Also define a function &(e,i,s) for all e,ie @ (at each stage
s), &(e,i,0)=i forall e,ic @.Weuse & to ensure that only
members of sufficiently large magnitude enter U at stage s,
so we can satisfy the lowness requirements N, .

For all i< j the requirement N, takes priority of the R,
and, naturally, N,(R;) takes priority of the N;(R;) .

The {P,},., do not appear in this ranking.
N, requires attention if it is not satisfied and {e}U (e)[s] 1.

R,y requires attention if itis not satisfied and

(ngy)(zz“(yw&y/,:"(y) ¢), where y = A(e,&(e,i,s)s) .

We will build U=|JU, and V,=(]V,, for all eca.

Initially all requirements N,, R, ;, are declared unsatisfied.

Construction.

Stage s=0.Let Uy=D, V,, =D forall ec .

Stage s+1. Part A Act on the highest priority requirement
which requires attention, if such a requirement exists.

a) If N, requires attention then set §(é,f,s+l)= §(é,f+s,s)
for each (e,i)=e . This action prevents injury to N, by
lower priority requirements as we assume that s bounds

the use of the halting computation.
Declare N, satisfied; declare all lower priority R, N

unsatisfied.

If R,; doesn’t require attention, then define E(,,s+1)

not specified and /7,*( ,,s+1), V:

11> Ugyy to be the same
as £(,,5), A( ,$), V,,,U, respectively and go to Part

B.

If R, require attention via y= ﬂ(e,f(e,i, s),s) then set
Vo=V, Uly-1L,y=2} and U, =U, U{y—-1}

b) If (Y;,Z,,1%.¥, ) is threatening V, ,,, through y at stage

S+

*

s+1 thenset V, =‘7€'S+lu{y} and U, =U,,, U{y}.

Whether (Y;,Z;,9.,y,; ) is threatening ‘7“ .1 through y at

stage s+1 or not define f(e,f(e,i,s),s+l)=
ﬂ,(e,f(e,i+§,s),s) ,
where 2 (y)=<< Xpsoeos Xy, >.a;>,

Y, 0)=<< y, 3, > 5>,

s= max{s,x; , X, } -
Such definition of A" allow us to satisfy Ri.iy
Z,.0.y;) is

threatening ‘7“ 4 through y or not (if don't take into

requirement (after Part A) whether (Y,

consideration higher priority requirements).
Declare R, satisfied; declare all lower priority R, N

unsatisfied.

Part B. If xeW

e,s+1

\W,, then set

*

Vost1 =Vein u{ﬂ* (e, x,s+l)} and

e e.

Me,x+ j,s+1) =4 (e,E(e,x+ j+1,5+1),s+1) forall je w.

Find all i such that /1(e,§(e,f,s +1),5)2 A (e,x,5+1) setand

declare RW,» unsatisfied for each such i

)

Define A(, ,s+1) not specified in part B above to be the

sameas A (,,s+1).

Note that for all s,&(e,i,s) is increasing in both e and i.

Verification

Lemmal Forall e, i:
. N, ismet.

1

2. lim,&(e,i,s) = E(e,i) exists.

3. R, ismet.

4. lim, ﬂ(e,.f(e,i,s),s)exists.
Proof. (1) and (2). The proof is similar to Lemma 1 of
Theorem 2.2.2 [3].
(3) and (4). By induction on j:<e,i>.
Suppose there exists a stage s, such that for all é,i with
<é,f >< j:
3. R, is metand never acts after stage s .

4. lims/i(é,.f(é,f,s),s) exists and is attained by stage s, .

Then (3) and (4): After s, when W, [ &(e,i)+1=

W, &(e,i)+1, then only R, ,can move e, &(e,i),s)
R, then acts at most once and is met, say by stage s, > s,
(when (Y;,Z;,8,y, ) is threatening ‘7“2 through y ) because

of definition of A" (at item a) of Part A) and the fact, that
ﬂ.(e,f(e,i),sz): lim, ﬂ.(e,f(e,i,s),s),



Lemma2 V,<, U®W,.

Proof. By permitting: in the construction a number k enters
V, only if number less than or equal to k enters U or enters

W,

s

Lemma 3 Forall e, P, is satisfied, that is W, = AV" .

e

Proof. To determine whether ze W, we need to find a stage
such that A(e,z,s) has attained its limit. V, computably
determines A(e,0),...,A(e,z) (note that A(e,y,s) changes
only if a number < A(e,y,s) enters V,).

Find a stage s, such that V, [ y,+1=V, [ 7, +1, where
7. =max{A(e,0),...,A(e,z)}. Then ze W, iff ze W, .

Lemmad4 V, is wtt -mitotic.

Proof. a) Prove V' <, V! (and hence V, <, V.)').

—wit —wit

Find a stage s such that V,[x-1=V] [x-1. Then
V() =V (x).
b) Prove V. <, V.

e

Find a stage s such that V,O[x+1=V0

e e.s

[ x+1. Then
Vi (x)=V) (x).
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