On Upper Cone of *T*-degrees Containing *wtt*-mitotic but not *tt*-mitotic Sets

Arsen H. Mokatsian

Institute for Informatics and Automation Problems National Academy of Sciences of Armenia e-mail: yuri@arminco.com

ABSTRACT

In this article it is shown, the existence of a low computably enumerable (c.e.) *T*-degree **u** such that if **v** is a c.e. *T*-degree and $\mathbf{u} \leq \mathbf{v}$ then **v** contains *wtt* -mitotic but non*tt* -mitotic set.

We shall use notions and terminology introduced in [5], [6]. The definitions of *tt* - and *wtt* - reducibilities are from [5].

Definition. The order pair **<<** x_1, \dots, x_k **>**, α **>**, where

 $\langle x_1, \dots, x_k \rangle$ is a k-tuple of integers and α is a k-ary Boolean function (k > 0) is called a *truth-table condition* (or *tt-condition*) of norm k. The set $\{x_1, \dots, x_k\}$ is called the *associated set of the tt-condition*.

Definition. The *tt*-condition $\leq x_1, \dots, x_k >, \alpha >$, is *satisfied* by *A* if $\alpha(c_A(x_1), \dots, c_A(x_k)) = 1$, where c_A is characteristic function for *A*.

Each *tt*-condition is a finite object; clearly an effective coding can be chosen which maps all *tt*-conditions (of varying norm) onto ω . Assume henceforth that a particular such coding has been chosen. Where we speak of "*tt*-condition *x*", we shall mean the *tt*-condition with the code number *x*.

Definition. A is *truth-table reducible to B* (notation: $A \leq_{tt} B$) if there is a computable function f such that for all x, $[x \in A \Leftrightarrow tt$ -condition f(x) is satisfied by B]. We also abbreviate "truth-table reducibility" as "tt-reducibility".

Definition. A is weak truth-table reducible to B (notation: $A \leq_{wtt} B$) if $(\exists z) [c_A = \varphi_z^B (\exists \text{ and computable } f)$ $(\forall x) [D_{f(x)} \text{ contains all integers whose membership in } B$ is used in the computation of $\varphi_z^B(x)$]].

Definition. A c.e. set is *tt* - mitotic (*wtt* - mitotic) set if it is the disjoint union of two c.e. sets both of the same *tt* -degree (*wtt* -degree) of unsolvability.

Let us modify notations defined in [4] with the purpose to adapt them to our theorem.

Let $A \leq_{tt} B$ and $(\forall x) [x \in A \Leftrightarrow tt$ -condition f(x) is satisfied by B] and $\varphi_n = f$. Then we say that $A \leq_{tt} B$ by φ_n .

Define $(A_0, A_1, \varphi_0, \varphi_1)$ is $[c.e. tt - split; A \leq_{tt}]$ if the following hold: A_0 and A_1 are c.e., $A_0 \cup A_1 = A$, $A_0 \cap A_1 = \emptyset$, $A \leq_{tt} A_0$ by ψ_0 and $A \leq_{tt} A_1$ by ψ_1 .

Let *h* be a recursive function from ω onto ω^4 .

Define $(Y_i, Z_i, \vartheta_i, \psi_i)$ to be a quadruple $(W_{i_o}, W_{i_1}, \varphi_{i_2}, \varphi_{i_3})$, where $h(i) = (i_0, i_1, i_2, i_3)$. If A is c.e. then we say that the non-tt-mitotic condition of i order is satisfied for A, if it is not the case $(Y_i, Z_i, \vartheta_i, \psi_i)$ is [c.e. tt-split; $A \leq_{tt}$].

Definition. $(Y_i, Z_i, \vartheta_i, \psi_i)$ is threatening A through x at stage s, if following hold:

(i)
$$i \leq s$$
,
(ii) $(\forall x_{\leq y}) (\vartheta_i^s(y) \downarrow \& \psi_i^s(y) \downarrow)$ and
 $\alpha_i (c_{Z_i}(x_1), \dots, c_{Z_i}(x_{k_i})) = 0$ and
 $\beta_i (c_{Z_i}(y_1), \dots, c_{Z_i}(y_{n_i})) = 0$,

(iii) $Y_i^s \cap Z_i^s = \emptyset$,

(iv) $A^{s}(m) = (Y_{i}^{s} \cap Z_{i}^{s})(m)$ for all $m \le \max\{s, x_{k_{i}}, y_{n_{i}}\}$,

where $\vartheta_i(y) = \langle x_1, \dots, x_{k_i} \rangle, \alpha_i \rangle,$ $\psi_i(y) = \langle y_1, \dots, y_{n_i} \rangle, \beta_i \rangle.$

In [3] it is proved that there is a low c.e. *T*-degree **u** such that if **v** is a c.e. *T*-degree and $\mathbf{u} \leq \mathbf{v}$ then **v** is not completely mitotic.

Theorem. There exists a low c.e. *T*-degree **u** such that if **v** is a c.e. *T*-degree and $\mathbf{u} \le \mathbf{v}$ then **v** contains *wtt* -mitotic but non-*tt* -mitotic set.

Proof. This statement is proved using a finite injury priority argument. We construct a member U of **u** in stages s, $U = \bigcup_{s \in \omega} U_s$. We also construct sets $\{V_e\}_{e \in \omega}$ to witness that each c.e. *T*-degree in upper cone of **u** contains a *wtt* -mitotic but non-*tt*-mitotic set.

Denote $\omega^0 = \{x : \exists y (2y) = x\}, \omega^1 = \omega \setminus \omega^0$.

Construct U, $\{V_e\}_{e\in\omega}$ to satisfy, for all $e\in\omega$, the requirements:

 $N_e: \{e\}^U(e) \downarrow$ has a limit in *S*, the stage.

- P_e : $W_e = \Lambda^{V_e}$ for some computable functional Λ .
- $R_{\langle e,i \rangle}$: The non-tt-mitotic condition of order *i* is satisfied for V_e .

We also ensure by permitting that $V_e \equiv_T U \oplus W_e$ and else $V_e^0 \equiv_{wtt} V_e^1$ (where $V_e^0 = V_e \cap \omega^0 \& V_e^1 = V_e \cap \omega^1$).

If $U \leq_T W_e$ then the above ensure that $V_e \equiv_T U \oplus W_e \equiv_T W_e$ and V_e is not *tt*-mitotic. Hence, $deg(W_e)$ is not *tt*-mitotic but is *wtt* -mitotic, and $\mathbf{u} = deg(U)$ is the required degree.

Let \langle , \rangle be computable bijective pairing function increasing in both coordinates. At each stage *S* place markets $\lambda(e, x, s)$ on elements of $\overline{V}_{e,s}$. Values of λ will be used both as witnesses to prevent the *tt*-mitoticity of V_e sets (by corresponding $Y_i, Z_i, \vartheta_i, \psi_i$) and to ensure that W_e is *T*-reducible to V_e . Initially $\lambda(e, x, 0) = 4(\langle e, x \rangle + 1) - 2)$ for all $e, x \in \omega$.

Also define a function $\xi(e,i,s)$ for all $e,i \in \omega$ (at each stage s), $\xi(e,i,0) = i$ for all $e,i \in \omega$. We use ξ to ensure that only members of sufficiently large magnitude enter U at stage s, so we can satisfy the lowness requirements N_e .

For all i < j the requirement N_i takes priority of the R_i and, naturally, $N_i(R_i)$ takes priority of the $N_i(R_i)$.

The $\{P_e\}_{e \in \omega}$ do not appear in this ranking.

 N_e requires attention if it is not satisfied and $\{e\}^U(e)[s]\downarrow$. $R_{\langle e,i\rangle}$ requires attention if it is not satisfied and $(\forall x_{\leq v})(\vartheta_i^s(y)\downarrow\&\psi_i^s(y)\downarrow)$, where $y = \lambda(e,\xi(e,i,s)s)$.

We will build $U = \bigcup_{s} U_{s}$ and $V_{s} = \bigcup_{s} V_{e,s}$ for all $e \in \omega$. Initially all requirements N_{e} , $R_{\langle e,i \rangle}$ are declared *unsatisfied*.

Construction.

Stage s = 0. Let $U_0 = \emptyset$, $V_{e,0} = \emptyset$ for all $e \in \omega$.

Stage s+1. Part A Act on the highest priority requirement which requires attention, if such a requirement exists.

a) If N_e requires attention then set ξ(ê, î, s+1) = ξ(ê, î + s, s) for each ⟨ê, î⟩ ≥ e. This action prevents injury to N_e by lower priority requirements as we assume that s bounds the use of the halting computation. Declare N_e satisfied; declare all lower priority R, N

unsatisfied.

If $R_{\langle e,i \rangle}$ doesn't require attention, then define $\xi(,,s+1)$ not specified and $\lambda^*(,,s+1), V_{e,s+1}^*, U_{s+1}$ to be the same as $\xi(,,s), \lambda(,,s), V_{e,s}, U_s$ respectively and go to Part B.

If $R_{\langle e,i \rangle}$ require attention via $y = \lambda(e,\xi(e,i,s),s)$ then set $\tilde{V}_{e,s+1} = V_{e,s} \cup \{y-1, y-2\}$ and $\tilde{U}_{s+1} = U_s \cup \{y-1\}$

b) If $(Y_i, Z_i, \vartheta_i, \psi_i)$ is threatening $\tilde{V}_{e,s+1}$ through y at stage s+1 then set $V_{e,s+1}^* = \tilde{V}_{e,s+1} \cup \{y\}$ and $U_{s+1} = \tilde{U}_{s+1} \cup \{y\}$. Whether $(Y_i, Z_i, \vartheta_i, \psi_i)$ is threatening $\tilde{V}_{e,s+1}$ through y at stage s+1 or not define $\lambda^*(e, \xi(e, i, s), s+1) = \lambda(e, \xi(e, i + \hat{s}, s), s)$, where $\vartheta_i(y) = \langle \langle x_1, \cdots, x_{k_i} \rangle, \alpha_i \rangle$,

$$\begin{split} \psi_i\left(y\right) = &< y_1, \cdots, y_{n_i} >, \beta_i > ,\\ \hat{s} = \max\{s, x_{k_i}, x_{n_i}\} \,. \end{split}$$

Such definition of λ^* allow us to satisfy $R_{\langle e,i\rangle}$ requirement (after Part A) whether $(Y_i, Z_i, \vartheta_i, \psi_i)$ is threatening $\tilde{V}_{e,s+1}$ through y or not (if don't take into consideration higher priority requirements).

Declare $R_{\langle e,i \rangle}$ satisfied; declare all lower priority R, N unsatisfied.

Part B. If $x \in W_{e,s+1} \setminus W_{e,s}$ then set

$$V_{e,s+1} = V_{e,s+1}^* \cup \left\{ \lambda^*(e,x,s+1) \right\} \quad \text{and}$$

$$\lambda(e,x+j,s+1) = \lambda^*(e,\xi(e,x+j+1,s+1),s+1) \text{ for all } j \in \omega.$$

Find all \hat{i} such that $\lambda(e,\xi(e,\hat{i},s+1),s) \ge \lambda^*(e,x,s+1)$ set and declare $R_{i,e,\hat{i},i}$ unsatisfied for each such \hat{i} .

Define $\lambda(, , s+1)$ not specified in part *B* above to be the same as $\lambda^*(, , s+1)$.

Note that for all $s, \xi(e, i, s)$ is increasing in both e and i.

Verification

- Lemma 1 For all e, i:
 - 1. N_e is met.
 - 2. $\lim_{s} \xi(e,i,s) = \xi(e,i)$ exists.
 - 3. $R_{\langle e,i\rangle}$ is met.
 - 4. $\lim_{s} \lambda(e, \xi(e, i, s), s)$ exists.

Proof. (1) and (2). The proof is similar to Lemma 1 of Theorem 2.2.2 [3].

(3) and (4). By induction on $j = \langle e, i \rangle$.

Suppose there exists a stage s_0 such that for all \hat{e}, \hat{i} with $\langle \hat{e}, \hat{i} \rangle < j$:

3. $R_{(\hat{a},\hat{i})}$ is met and never acts after stage s_0 .

4. $\lim_{s \to 0} \lambda(\hat{e}, \xi(\hat{e}, \hat{i}, s), s)$ exists and is attained by stage s_0 .

Then (3) and (4): After s_1 when $W_{e,s} \upharpoonright \xi(e,i)+1 = W_e \upharpoonright \xi(e,i)+1$, then only $R_{\langle e,i \rangle}$ can move $\lambda(e,\xi(e,i),s)$, $R_{\langle e,i \rangle}$ then acts at most once and is met, say by stage $s_2 > s_1$ (when $(Y_i, Z_i, \vartheta_i, \psi_i)$ is threatening \tilde{V}_{e,s_2} through y) because of definition of λ^* (at item a) of Part A) and the fact, that $\lambda(e,\xi(e,i),s_2) = \lim_{s} \lambda(e,\xi(e,i,s),s)$.

Lemma 2 $V_e \leq_T U \oplus W_e$.

Proof. By permitting: in the construction a number k enters V_e only if number less than or equal to k enters U or enters W_e .

Lemma 3 For all e, P_e is satisfied, that is $W_e = \Lambda^{V_e}$.

Proof. To determine whether $z \in W_e$ we need to find a stage such that $\lambda(e, z, s)$ has attained its limit. V_e computably determines $\lambda(e, 0), \dots, \lambda(e, z)$ (note that $\lambda(e, y, s)$ changes only if a number $\leq \lambda(e, y, s)$ enters V_e).

Find a stage s_z such that $V_{e,s_z} \upharpoonright \gamma_z + 1 = V_e \upharpoonright \gamma_z + 1$, where $\gamma_z = \max{\lambda(e,0), \dots, \lambda(e,z)}$. Then $z \in W_e$ iff $z \in W_{e,s_z}$.

Lemma 4 V_e is wtt -mitotic.

Proof. a) Prove $V_e^0 \leq_{wtt} V_e^1$ (and hence $V_e \leq_{wtt} V_e^1$).

Find a stage *s* such that $V_e^1 \upharpoonright x - 1 = V_{e,s}^1 \upharpoonright x - 1$. Then $V_e^0(x) = V_{e,s}^0(x)$.

b) Prove $V_e^0 \leq_T V_e^1$.

Find a stage s such that $V_e^0 \upharpoonright x + 1 = V_{e,s}^0 \upharpoonright x + 1$. Then $V_e^1(x) = V_{e,s}^1(x)$.

REFERENCES

- R.G. Downey and T. A. Slaman, "Completely mitotic r. e. degrees", Ann. Pure Appl. Logic, pp.119–152, 41, 1989.
- [2] R.G. Downey and M. Stob, "Splitting theorems in recursion theory", Ann. Pure Appl. Logic, pp. 1–10665, 1993.
- [3] E.J. Griffiths, "Completely Mitotic Turing degrees, Jump Classes and Enumeration Degrees", *Ph. D. Thesis*, *University of Wisconsin-Madison*, 1998.
- [4] R. Ladner, "Mitotic Enumerable Sets", *The Journal of Symbolic Logic*, pp. 199-211, v. 38, N. 2, June 1973.
- [5] H. Rogers, "Theory of recursive Functions and effective Computability", McGraw-Hill Book Company, 1967
- [6] R.I. Soare, "Recursively Enumerable Sets and Degrees", Springer-Verlag, 1987.