On the Structure of Interlaced q-bilattices

Yuri, Movsisyan

Yerevan State University Yerevan, Armenia e-mail: yurimovsisyan@yahoo.com

ABSTRACT

Recent developments in logic programming have been based on bilattices. Bilattices were introduced and applied by Ginsberg and Fitting for a diversity of applications, such as truth maintenance systems, default inferences and logic programming. Ginsberg and Fitting proved that every bounded distributive bilattice is the superproduct of two distributive bounded lattices [1]-[5]. A similar result was proved for bounded interlaced bilattices [6] (also see [7]) and then for interlaced bilattices without bounds [8]. In the present paper, we consider more general concepts: the concepts of qsemilattices, q-lattices and q-bilattices, and we find a necessary and sufficient condition for existence of an epimorphism between q-bilattices and the superproduct of two lattices.

Keywords

lattice, bilattice, q-semilattice, q-lattice, q-bilattice.

1. INTRODUCTION

Definition 1. A quasiorder is a reflexive and transitive relation.

Definition 2. The algebra (L; *) with one binary operation is called a *q*-semilattice if it satisfies the following identities:

$$a * (b * c) = (a * b) * c$$
$$a * b = b * a;$$
$$a * (b * b) = a * b.$$

The set of all the idempotent elements of the q-semilattice is a semilattice.

Definition 3. The algebra $(L; +, \cdot)$ with two binary operations is called a *q*-lattice if it satisfies the following identities [9]:

$$a + (b + c) = (a + b) + c; a \cdot (b \cdot c) = (a \cdot b) \cdot c;$$
$$a + b = b + a; a \cdot b = b \cdot a$$
$$a + (b + b) = a + b; a \cdot (b \cdot b) = a \cdot b$$
$$a + (a \cdot a) = a + a; a \cdot (a + b) = a \cdot a;$$
$$a + a = a \cdot a;$$

The set of all the idempotent elements of the q-lattice is a lattice.

Let Q be a quasiorder on $L \neq \emptyset$ set, then $E_Q = Q \bigcap Q^{-1} \subseteq L \times L$ is an equivalent relation. The relation Q/E_Q is an

Diana, Davidova

Yerevan State University Yerevan, Armenia e-mail: di-di101286@rambler.ru

order, which is induced from the Q on L/E_Q set, in the following manner: $(A, B) \in Q/E_Q \iff aQb$, where $A, B \in L/E_Q$, for any $a \in A$, and $b \in B$. The order Q/E_Q is denoted by \leq , and the class which includes the element x is denoted by $[x] \in L/E_Q$.

Definition 4. The function $K : L/E_Q \longrightarrow L$ is called a choice-function if $K([a]) \in [a]$ for every $[a] \in L/E_Q$.

Definition 5. The triple (L, Q, K) is called an *inf*-quasiordered (*sup*-quasiordered) set if $\inf([a], [b])$ ($\sup([a], [b])$) exists for each pair of the two elements $[a], [b] \in L/E_Q$.

Definition 6. The triple (L, Q, K) is called an *L*-quasiordered set if $\inf([a], [b])$ and $\sup([a], [b])$ exist for each pair of the two elements $[a], [b] \in L/E_Q$.

We need the following characterization of q-semilattices.

Theorem 1. Let Q be a quasiorder on the set $L \neq \emptyset$. The following statements are equivalent:

- 1. $(L/E_Q; \leq)$ is a lower (upper) semilattice;
- There exists a binary operation + (dual ·) on the set L such that(L; +) (dual (L; ·)) is a q-semilattice, which is called a lower (upper) q-semilattice.

A quasiorder Q is defined by the following rule: $aQb \iff$ $a + b = a + a(aQb \iff a \cdot b = b \cdot b);$

In particular, the following conditions are also equivalent:

1. $(L/E_Q; \leq)$ is a lattice;

Ì

2. There exist the binary operations + and · on the set L such that(L; +, ·) is a q-lattice.
And for the quasiorder Q we have: aQb ⇔ a + b = a + a ⇔ a · b = b · b;

Example. Let us consider the oriented graph (L, R), where

$$L = \{a_1, a_2, a_3, a_4, a_5, a_6, a_7\},\$$

 $R = \{ \langle a_1, a_2 \rangle, \langle a_2, a_3 \rangle, \langle a_3, a_1 \rangle, \langle a_4, a_1 \rangle, \langle a_4, a_1 \rangle \}$

$$< a_5, a_3 >, < a_6, a_4 >, < a_7, a_5 >, < a_6, a_7 >, < a_7, a_6 > \}.$$

We say that $aQb \iff$ if there exists a path from a to b, or a = b. The lattice induced from the oriented graph (L, R) is consisted of the following classes: $\{a_1, a_2, a_3\}, \{a_4\}, \{a_5\}, \{a_6, a_7\}$. Let us define the choice-function as the following:

$$K(\{a_1, a_2, a_3\}) = a_2, K(\{a_4\}) = a_4,$$

$$K(\{a_5\}) = a_5, K(\{a_6, a_7\}) = a_6$$

Hence, we have the L-quasiordered set (L, Q, K) and hence we have the q-lattice $(L; +, \cdot)$ with the operations:

 $x + y = K(\inf([x], [y])), x \cdot y = K(\sup([x], [y])),$

where $[x], [y] \in L/E_Q$.

So we constructed an example of the $q\mbox{-}lattice,$ which isn't a lattice.

Definition 7. The algebra $(L; +, \cdot, \oplus, \otimes)$ with four binary operations is called *q*-bilattice (bilattice) if both reducts, $(L; +, \cdot)$ and $(L; \oplus, \otimes)$, are *q*-lattices (lattices).

The set of all the idempotent elements of the q-bilattice is a bilattice.

Definition 8. Let $L_1 = (L_1; +, \cdot)$ and $L_2 = (L_2; \oplus, \otimes)$ be lattices. The algebra $(L_1 \times L_2; (+, \oplus), (\cdot, \otimes), (+, \otimes), (\cdot, \oplus))$ is called the superproduct of L_1 and L_2 and is denoted by $L_1 \bowtie L_2$.

Definition 9. *q*-bilattice (bilattice) is interlaced if each of the four basic operations preserves both corresponding quasiorder (order) relations.

2. MAIN RESULT

Theorem 2. For every interlaced *q*-bilattice $(L; +, \cdot, \oplus, \otimes)$ there exists an epimorphism to the superproduct $L_1 \bowtie L_2$ of two lattices, which is an isomorphism on the bilattice of the idempotent elements.

Finally, we constructed an example of an interlaced *q*-bilattice for which the corresponding epimorphism is not an isomorphism.

REFERENCES

- Fitting M., "Negation as refutation", Proc. 4th Annual Symp. On Logic in Computer Science, IEEE press, pp. 63-70, 1989.
- [2] Fitting M., "Bilattices in logic programming". The 20th Int. Symp. On Multiple- Volued Logic (G.Epstein-Ed.), IEEE Press, pp. 238-246, 1990.
- Fitting M., "Bilattices and the semantics of logic programming", Jornal of Logic Programming, Vol.11, 2, pp. 91-116, Aug. 1991.
- [4] Ginsberg M.L., "Multivalued logics: a uniform approach reasoning in AI". Computer Intelligence, Vol.4, pp.256-316;1988.
- [5] Jonsson B., "Distributiv Bilattices", Vanderbilt University", Dec 1994.
- [6] Romanowska A.B., Trakul A.,"On the stracture of some bilattices", Universal and Applied Algebra, World Scientific, pp 235-253,1989.
- [7] Avron A,"The stracture of interlaced bilattices", Math. Struct. in Comp. Science, Cambridge University Press, vol. 6, pp 287-299,1996.
- [8] Movsisyan Yu. M., Romanowska A. B., Smith J. D.H., "Superproducts, hyperidentities, and algebraic structures of logic programming", *Comb. Math. And Comb. Comp. v.58*, p.101-111,2006.
- [9] Chajda I., "Lattices in quasiordered sets", Acta Polack. University Olomouc, 6 -12,1992.