

Modification of SLDNF-resolution for Built-in Predicates

 Semyon Nigiyan

Yerevan State University
Yerevan, Armenia

e-mail: nigiyan@ysu.am

Lusine Sargsyan

Yerevan State University
Yerevan, Armenia

e-mail: lusinas@rambler.ru

ABSTRACT
In this paper the general logic programs with built-in
predicates (logic programs with built-in predicates which use
negation), general logic goals with built-in predicates (logic
queries with built-in predicates which use negation) are
regarded. Modification of SLDNF-resolution for built-in
predicates is introduced. The soundness of modified SLDNF-
resolution is proved.

Keywords
Logic, program, negation, built-in predicates, completion,
SLDNF-resolution, soundness.

Consider three nonintersecting sets Φ, Π and X. Φ is a set of
functional symbols each possessing an arity. For any n≥0, Φ
contains a countable number of symbols of arity n. X is a
countable set of variables. Terms are composed of elements of
sets Φ and X.

1. Each 0-ary symbol of Φ is a term.
2. Each variable of X is a term.
3. If t1,…,tn (n>0) are terms and f is n-ary symbol of

Φ, then f(t1,…,tn) is a term.
4. No other terms exist.

The set of all terms with no variables is denoted by M. The set
M is called the Herbrand universe.
Π=Π1∪Π2, where Π1 is the set of predicate symbols and for
any n≥0, Π1 contains a countable number of symbols of arity
n, Π2 is the set of built-in predicate symbols (built-in
predicates), each k-ary (k>0) built-in predicate is a calculable
mapping Mk→{true, false}. The atoms are defined as usual:

1. Each 0-ary symbol of Π is an atom.
2. If t1,…,tn (n>0) are terms and p is n-ary symbol of

Π, then p(t1,…,tn) is an atom.
3. No other atoms exist.

A formula of the first-order predicate logic over logical
operations ¬, &, ∨, ⊃, ∼ and quantifiers ∃ and ∀ is defined
conventionally [1]. A predicate term is an atom, which uses
predicate symbol from Π1. A literal is a predicate term or the
negation of a predicate term. A ground literal is a literal not
containing variables. A condition is an atom or the negation of
an atom, which use predicate symbol from Π2. By Var(L) we
denote the set of all variables involving in L, where L is a
literal, a condition, or a term.
The substitution σ is a set {t1/x1,…,tn/xn}, where ti is a term, xi
is a variable, ti≠xi, i≠j ⇒ xi≠xj, i,j=1,…,n, n≥0. The following
notations are introduced: Arg(σ)={x1,…,xn},
Var(σ)=Var(t1)∪…∪Var(tn). The composition of substitutions
is defined traditionally.
Describe the studied interpretations (Herbrand
interpretations). The object set of interpretations is the set M.
The functional symbols are interpreted in the following way:
with each 0-ary symbol of Φ we associate that symbol itself.
With each n-ary (n>0) symbol f∈Φ we associate the mapping
Mn→M that maps n-tuple (t1,…,tn)∈Mn to a term f(t1,…,tn).

With each 0-ary symbol of Π1 we associate one of the
elements of the set {true, false}, and with each n-ary (n>0)
symbol of Π1 we associate some mapping Mn→{true, false}.
Denote the described set of interpretations by H. Note that
interpretations from H may be different only in mappings
corresponding to symbols from Π1.
Let F be a closed formula and I be an interpretation from H.
The value of a formula F on the interpretation I is defined in
the natural way and denoted by ValI(F). The formula F is
termed identically true if F takes the value true on any
interpretation from H. If F and F' are closed formulas and the
formula F⊃F' is identically true, we will say that F' is a
logical consequence of F and denote this fact by F|=F'.

A general logic program with built-in predicates (or, simple
program) P is a sequence S1,…,Sn of the clauses, n>0. A
clause S∈{S1,…,Sn} has the form A:-L1,…,Lm, where A is a
predicate term, each L∈{L1,…,Lm} is a literal or a condition,
m≥0. Atom A is called the head of the clause S, the sequence
L1,…,Lm is called the body of S, and number m is termed the
length of the body of S. If m=0, S is termed a fact; if m>0, S is
termed a rule. With the program P we associate the formula
comp(P):

F(p1)& … &F(pu),
where p1,…,pu are the predicate symbols from program P,
pi∈Π1, i=1,…,u, u≥1, and every F(p), where p∈{ p1,…,pu}, is
defined in the following way:
If p is a 0-ary predicate symbol and p is a fact of program P,
then F(p) is p, else if p does not appear in the head of any
clause of program P, then F(p) is ¬p, else if definition of p is:
p:-B1,…,p:-Bv, where Bi is the body of the clause p:-Bi,
i=1,…,v, v≥1, then F(p) is:

p∼E1∨…∨Ev,
where Ei is ∃y1…∃yd(L1& … &Lm), y1,…,yd (d≥0) are the
variables of the rule p:-Bi, and Bi is L1,…,Lm, m≥1, i=1,…,v.
If p is an n-ary (n>0) predicate symbol and p does not appear
in the head of any clause of program P, then F(p)
is∀x1…∀xn¬p(x1,…,xn), else if definition of p is: A1:-B1,…,
Av:-Bv, where Bi is the body of the clause Ai:-Bi, i=1,…,v, v≥1,
then F(p) is:

∀x1…∀xn (p(x1,…,xn)∼E1∨…∨Ev),
where x1,…,xn are variables not appearing in the clauses
A1:-B1,…,Av:-Bv, and each Ei has a form
∃y1…∃yd((x1=t1)&…&(xn=tn)&L1&…&Lm), y1,…,yd (d≥0) are
the variables of the rule Ai:-Bi, Ai is p(t1,…,tn) and Bi is
L1,…,Lm, m≥0, i=1,…,v.
A general goal with built-in predicates (or, simple goal) Q has
the form ?- L1,…,Lk, where Li is a literal or a condition,
i=1,…,k, k≥0; number k is termed the length of the goal Q. If
k=0, Q is termed an empty goal. The nonempty goal Q is
identified with the formula:

∃y1 … ∃ys(L1& … &Lk),
where y1,…,ys are the variables involved in the L1,…,Lk, k≥1,
s≥0. The set {y1,…,ys} we denote by Var(Q).

The definition of general logic program and general goal
without built-in predicates you can find in [1].
Computation rule R for general logic programs and general
goals with built-in predicates based on modified SLD-
resolution (see [2]) and is defined using functions SelR and
SubR. (The definition of computation rule for general logic
programs and general goals without built-in predicates you
can find in [1]).
 Let Q be a goal ?- L1,…,Lk, k≥1, SelR(Q)∈{1,…,k}. Let
SelR(Q)=j (1≤j≤k). If Lj is a literal SubR(Q) is undefined. Let
Lj be a condition. Then SubR(Q) is a set of substitutions and
for any σ∈SubR(Q) the following conditions are satisfied:

a) Arg(σ) ⊂ Var(Lj),
b) Var(σ) ∩ (Var(Q)\Var(Lj)) = ∅,
c) Val(Ljσγ)=true for any substitution γ such that

Var(Ljσγ) = ∅.
And for any substitution δ such that Var(Ljδ)=∅ and
Val(Ljδ)=true, there exist σ∈SubR(Q) and γ such that
Ljδ=Ljσγ.

We specify an appropriate class of computation rules. A
computation rule R (for SLDNF-resolution with built-in
predicates) is safe if the following conditions are satisfied:

1. R only selects negative literals which are ground.
2. Having selected a ground negative literal ¬A in

some goal, R attempts to finish the construction of a finitely
failed SLDNF-tree with root ?-A before continuing with the
remainder of the computation.
Let P be a program, Q be a nonempty goal and R be a safe
computation rule. An SLDNF-derivation Q1,Q2,… of (P,Q) via
R, where Q1=Q, is defined as follows:
Suppose Qi is ?-L1,…,Lk (k≥1) and R selects the positive literal
Lj (1≤j≤k). Suppose A:-K1,…,Km (m≥0) is the input clause and
Lj and A have most general unifier (mgu) σ. The derived goal
Qi+1 is ?-L1σ,…, Lj-1σ, K1σ,…,Kmσ,Lj+1σ,…, Lkσ.
Suppose Qi is ?-L1,…,Lk (k≥1) and R selects the ground
negative literal Lj, where Lj is ¬A, (1≤j≤k). An attempt is
made to construct an SLDNF-tree with ?-A at the root. If the
goal ?-A succeeds, then the subgoal ¬A fails and so the goal
Qi also fails. If A fails finitely, then the subgoal ¬A succeeds
and the derived goal Qi+1 is ?-L1,…,Lj-1,Lj+1,…,Lk.
Suppose Qi is ?-L1,…,Lk (k≥1) and R selects the condition Lj
(1≤j≤k). Let SubR(Qi) ≠ ∅ and δ∈SubR(Qi), the derived goal
Qi+1 is ?-L1δ,…,Lj-1δ,Lj+1δ,…,Lkδ.

Let P be a program, Q be a nonempty goal and R be a safe
computation rule. Then the SLDNF-tree for (P,Q) via R is
defined as follows:

1. Each node of the tree is a goal.
2. The root node is Q.
3. Let ?-L1,…,Lk (k≥1) is a node of the tree and

suppose that the literal selected by R is the positive literal Lj
(1≤j≤k). Then this node has a descendent for each input clause
A:-K1,…,Km (m≥0), such that Lj and A are unifiable. The
descendent is ?-L1σ,…, Lj-1σ, K1σ,…,Kmσ,Lj+1σ,…, Lkσ, where
σ=mgu(Lj,A).

4. Let ?-L1,…,Lk (k≥1) is a node of the tree and
suppose that the literal selected by R is the ground negative
literal Lj (1≤j≤k). If the subgoal Lj is successful, then the
single descendent of the node is ?-L1,…,Lj-1,Lj+1,…,Lk.
If the subgoal Lj fails, then the node has no descendents.

5. Let ?-L1,…,Lk (k≥1) is a node of the tree and
suppose that R selects the condition Lj (1≤j≤k). If SubR(Qi)≠∅
then this node has a descendent for each δ∈SubR(Qi). The
descendent is ?-L1δ,…,Lj-1δ,Lj+1δ,…,Lkδ.
If SubR(Qi)=∅, then this node has no descendents.

6. Nodes which are the empty goal have no
descendents.

Let P be a program, Q be a nonempty goal and R be a safe
computation rule. A finitely failed SLDNF-tree for (P,Q) via
R is one which is finite and contains no branches, which end
in the empty goal.

Theorem 1. Let P be a program, Q be a nonempty goal and R
be a safe computation rule. Then, if (P,Q) has a finitely failed
SLDNF-tree via R, then comp(P) |= ¬Q.

Theorem 2. Let P be a program, Q be a goal ?-L1,…,Lk (k≥1)
and R be a safe computation rule. Then, if (P,Q) has an
SLDNF-derivation, which ends in the empty goal, and σ1,…,σs
(s>0) is the sequence of substitutions using in this derivation,
then comp(P)|=∀y1…∀ym((L1&…&Lk)σ1…σs), where y1,…,ym
are variables appearing in (L1&…&Lk)σ1…σs.

REFERENCES
[1] J.W. Lloyd, “Foundations of Logic Programming”, Berlin:
Springer-Verlag, 1984.
[2] S.A. Nigiyan, “Horn Programming with Built-in
Predicates”, Programming and Computer Software, Vol.22,
N1, pp. 19-25, 1996.

	REFERENCES

