
JLog: Automated Theorem Prover for Johansson's Minimal Logic
of Predicates

Tatevik Ohanyan
Yerevan State University

Department of Informatics and Applied Mathematics
Yerevan, Armenia

e-mail: tatev.ohanyan@gmail.com

Hovhannes Bolibekyan
Yerevan State University

Department of Informatics and Applied Mathematics
Yerevan, Armenia

e-mail: bolibekhov@ysu.am

ABSTRACT
In the paper a theorem prover based on a cut-free sequent
system for Johansson’s minimal logic of predicates is de-
scribed. It uses loop checking mechanism to avoid redun-
dancies. Proofs may be displayed in a Fitch-style natural
deduction format.

Keywords
Prover, predicate, calculus, sequent, minimal, logic.

1. OVERVIEW
Automated theorem proving has matured into one of the
most advanced areas of computer science. The area of ap-
plications varies from proof of mathematical statements to
formal verification of complex software and hardware sys-
tems. There are numerous provers for classical logic(for ex-
ample SPASS, Flotter, Vampire, Fiesta, etc. [1]-[3]).

In the paper a fully automated theorem prover JLog for
a cut-free sequent system for Johansson’s minimal logic of
predicates is described. Though the method it uses is un-
sophisticated on small problems JLog is fast. Its speed is
achieved by careful coding in a low-level language (C++)
and by eliminating many obvious redundancies in proof sear-
ches. The system is useful for a comparison of some new
strategies for proof search implementations based on cut-
free sequent systems for first order predicate logic.

2. LOGIC
Following to [4] let us introduce a sequential cut-free calculus
for Johansson’s minimal logic of predicates. By a sequent we
mean a pair <Γ, B> where Γ is a set of predicate formulae
of Johansson’s minimal logic in a given language and B is
a single formula at most. As usual where Γ is finite the
sequent A1, . . .,An→B is considered and read as A1, . . . , An

entail B. Let’s recall axiomatic system introduced in [4].

We consider that in the scope of this system A, B, C and
D are any formulae, Γ and ∆ are finite (may be empty)
sets of formulae, Θ is empty or consists of only one formula,
x is a variable, t is a term which is free for substitution
instead of x in A(x) formula, d is a variable which is free for
substitution instead of x in A(x) formula and (if d is different
from x) then it isn’t free in A(x). (Note that if A and B are
formulae and x is a variable, then (A⊃B), (A&B), (A∨B),
¬(A), ∀x(A), ∃x(A) are formulae.)

Logical axioms of the system are presented as sequents of
the form C, Γ → C, where Γ is a set of predicate formulae
and C is an arbitrary predicate formula.

Given below inference rules of the system are divided into
antecedential and succedential ones for every logical connec-
tive − &, ∨, ⊃, ¬, ∀, ∃ used in the language.

A, Γ → B

Γ → (A ⊃ B)

(A ⊃ B), Γ → A and B, (A ⊃ B), Γ → Θ

(A ⊃ B), Γ → Θ

Γ → A and Γ → B

Γ → (A&B)

A, (A&B), Γ → Θ or B, (A&B), Γ → Θ

(A&B), Γ → Θ

Γ → A or Γ → B

Γ → (A ∨B)

A, (A ∨B), Γ → Θ and B, (A ∨B), Γ → Θ

(A ∨B), Γ → Θ

A, Γ →
Γ → ¬(A)

¬(A), Γ → A

¬(A), Γ →

Γ → A(d)

Γ → ∀xA(x)
1 A(t), ∀xA(x), Γ → Θ

∀xA(x), Γ → Θ

Γ → A(t)

Γ → ∃xA(x)

A(d), ∃xA(x), Γ → Θ

∃xA(x), Γ → Θ
1

In [4] equivalence of this cut-free system and the system with
cut rule was proved as well as equivalence to the Hilbert
system of minimal logic. As it is generally accepted an-
tecedential rules (rules of the left column) are denoted by
⊃→, &→, ∨ →, ¬ →, ∀ →, ∃ → and succedential rules
(rules of the right column) - by →⊃, →&, → ∨, → ¬, → ∀,
→ ∃ respectively.

1d does not occur free in a bottom sequent.



3. ALGORITHM
The implementation of the prove based on the above men-
tioned sequent calculus is fairly straightforward. The main
function is a module INFERENCE which takes as an argu-
ment an initial sequent and delivers as a value a pointer to
a proof tree of that sequent if there is one or null pointer if
there is not. JLog deletes that sequent from the list of those
under test on returning a proof or disproof of an irreducible
sequent.

As we have seen earlier inference rules are of two types - rules
for logical connectives in an antecedent and in a succedent.
The inference of the given sequent goes in the following or-
der:

1. The sequent is verified on being an axiom or not. If it
is an axiom the proof is trivial otherwise it should be
decided for which formula apply an inference rule.

2. If all formulae in a sequent are trivial and the sequent
is not an axiom, failure. Otherwise for the formula in
a sequent selected by the second filter described below
an inference rule is applied. The precedence is given to
a formula in succedent. If the succedential formula is
trivial (it cannot be divided any more) a formula from
antecedent is selected. Filtering described after step
five is applied on each step of proof search excepting
trivial case when sequent is an axiom.

3. As branching in the proof tree occurs if the principle
formula is parsed by ∨, & in antecendent or in succe-
dent, and if the principle formula is parsed by ⊃ in
antecedent we introduce some proof restrictions.

3.1 Return the proof in the case it is found if an axiom
is achieved at least in one branch of the tree in
the following cases

3.1.1 the formula in succedent contains ∨ as a main
connective

3.1.2 the formula in antecedent contains & as a
main connective

3.2 Return the proof if one is found when an axiom
is achieved in both branches of the tree in the
following cases

3.2.1 the formula in succedent contains & as a main
connective

3.2.2 the formula in antecedent contains ⊃ as a
main connective

3.2.3 the formula in antecedent contains ∨ as a
main connective

4. If the principle formula is parsed by ⊃ in succedent, ¬,
∀, ∃ in any of succedent or antecedent the tree has only
one branch. The proof is found if axiom is achieved.

5. Nothing has worked, so return failure.

It remains to describe the filters applied during the proof
search. For each formula in a sequent we introduce some
label (true or false, it is false by default for all formulae)
indicating if some inference rule has been applied to it. Its
value can be changed no more than once during the proof
search. If the rule has been applied to it there will be no
more applications of that rule on a considered formula as
its label is not reset until the end of a proof or a failure.
It is worth to notice that if in the result of an application
of some inference rule some formula should be added to a
succedent or an antecedent that already contains an entry of

that formula then the label of the added formula is changed.
This filter is applied on each step of the proof.

On step two we should decide to which formula inference
rule should be applied. This is done using subformula prop-
erty. To be more precise, this filter is applied only for ⊃→
inference rule. It is verified if the left promise of the principal
formula is contained in Γ. If it is contained then the rule
is applied to that formula, otherwise the search to satisfy
this filter condition is continued. If no formula is found the
first one from the set is selected. Further success or failure
of proof search depends on the filter described in the next
paragraph.

Finally the third filter developed in JLog is a loop detection
mechanism. Before proceeding to the filter description let us
define the notion of the loop. Loop is a sequence of sequents
where the last item of the sequence coincides with its first
item. Using the notion of a loop proof search in JLog fails
in the following cases:

• If every branch of the tree with the root of the form
(A⊃B), Γ→Θ or of the form Γ→(A∨B), where A , B
are formulae, and Γ , Θ are sets of formulae, contains
a loop. (To prove a sequent in the case of ⊃→ and →∨
rules one should prove both sequents in new branches.)

• For the rest of the rules (→⊃,→&, →¬, →∀, →∃,
⊃→, ∨→, ¬→, ∀→, ∃ →) failure occurs if any of
the branches generated by their application contains
a loop.

If no loop is detected the proof search will go on.

The tree on the figure below schematically demonstrates an
example when proof is found though one of the branches in
proof tree contains a loop.

Contrary to the above given case the tree below demon-
strates an example when proof is failed as it is required that
all branches should be terminated by axioms.



4. FORMAT OF INPUT AND OUTPUT
A sequent is presented in JLog as a string where the an-
tecedent of the sequent is presented by formulae separated
by commas, and the succedent consists of at most one for-
mula. Succedent and antecedent are separated by an arrow.
Influenced by the specifications of described logical system
both succedent and antecedent might also be empty sets of
formulae. Formulae are written in infix notation. It is im-
portant to mention that parentheses for each formula are
required as it was described above. Disjunction is repre-
sented as ”|”, conjunction as ampersand ”&”, negation as
”!”, implication as ”>”, generalization quantifier as ”#”, ex-
istential quantifier as ”$”, and the arrow which divides the
antecedent and succedent as ”−>” (as a ’minus’ followed by
’greater than’). Capital letters with indices are reserved for
predicates (propositions should also be given in uppercase
without parenthesis), f , g, and h with indices are reserved
for functional symbols, a, b, and c with indices are used
for constants, and finally x, y, z with indices for variables.
The symbol ”t” is reserved for implementation purposes so
it cannot be used during the input and serves as a term in
application of →∀, ∀→, →∃, ∃→.

For example, an input for JLog should look like the following
one:

(P (x)>Q(y)), (Q(y)>R(a))−>((P (x)|Q(y))>R(a))

In sequential systems the proof usually presented by infer-
ence tree. JLog stores it as a natural deduction proof with
indication of premises and inference rules. The proof of
→(A⊃(B⊃(A&B))) sequent given below:
B, A→B and B, A→B

B, A→(A&B)
A→(B⊃(A&B))

→(A⊃(B⊃(A&B)))

JLog presents that proof in the following format:

1. →(A⊃(B⊃(A&B)))

2. A→(B⊃(A&B)) (1) →⊃

3. B, A→(A&B) (2) →⊃

4. B, A→B (3) →& (axiom)

5. B, A→B (3) →& (axiom)

REFERENCES
[1] Weidenbach C., Gaede B. and Rock G. Spass and

flotter, Version 0.42. Proceedings of the 13th
International Conference on Automated Deduction, pp.
141-145, 1996.

[2] Riazanov A. and Voronkov A. Vampire. Proceedings of
the 16th International Conference on Automated
Deduction, pp. 292-296, 1999.

[3] Nieuwenhuis R., Rivero J. and Vallejo M. The
Barcelona Prover. Journal of Automated Reasoning,
18(2), pp. 171-176, 1997.

[4] Bolibekyan H.R., Chubaryan A.A. On some proof
systems for I. Johansson’s minimal logic of predicates.
Proceedings of the Logic Colloquium, p. 56, 2003 (and
the Bulletin of Symbolic Logic, 10(2), p.250, 2004).


