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ABSTRACT
We suggest a number efficient pattern matching algorithms
for dependence graphs of traces. A graph G = (V, E, λ) of
partial order labeled by letters from alphabet Σ belongs to
this class iff there exists a reflexive and symmetric relation
D ⊂ Σ × Σ such that if v <G v′ and (λ(v).λ(v′)) ∈ D →
(v, v′) ∈ E. We consider pattern matching problems related
to problems of recognizing frequent patterns in structured
data.
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1. INTRODUCTION
The efficient algorithms for strings are widely known [1-11].
In trace theory a string is regarded as a representative of
a class of strings that are equivalent in the following sense.
Given the independence relation on the alphabet two strings
are equivalent if one can be received from the other by trans-
position of adjacent independent letters. In this paper a
number string matching algorithms are considered for arbi-
trary dependence relation on the alphabet, that generalize
usual string matching problems without independent letters.
Problem of inclusion a string into another string in this con-
text acquires the form of trace matching: given the strings
x and y – the representatives of equivalence classes (traces)
pattern p = [x] and target t = [y] correspondingly to decide
whether exist such strings x′ ∈ p and y′ ∈ t that x′ is subse-
quence of y′. The task is to find efficient algorithm solving
the problem.

We study here two algorithms for inclusion problem. The
first algorithm preprocesses on-line the fixed pattern x ∈ p
and then on-line scans the string y ∈ t reading each sym-
bol of y only once. The algorithm runs in time O(|t|+ |p|).
The second algorithm does not call for preprocessing of the
target or pattern. It scans concurrently the pattern and the
target, reading each symbol of x only once, but returning to
the beginning of the target string y ∈ t. This algorithm runs
in time O(|t||p|). Further we consider two problems related
to problems of recognizing frequent patterns in structured
data: 1) given the integer w count the number of w-trace-
windows of string-representative of target t which include
the trace-pattern; 2) count the number of minimal factors
of target t where pattern p is included.
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2. PRELIMINARIES
In this section we provide necessary background informa-
tion. The details can be found in [12].

Let Σ is a finite alphabet, D ⊆ Σ×Σ is a reflexive and sym-
metric dependence relation, I = (Σ×Σ) \D is indepen-
dence or commutation relation. The relation I induces
an equivalence relation ∼

I
over Σ∗. Two strings x, y ∈ Σ∗

are equivalent under ∼
I

if there exists a sequence z1, . . . , zk

of strings such that x = z1, y = zk, and for all i (1 ≤ i < k)
there exist strings z′i, z

′′
i and letters ai, bi satisfying

zi = z′iaibiz
′′
i

zi+1 = z′ibiaiz
′′
i and (ai, bi) ∈ I,

i.e., two strings are equivalent by ∼
I

if one can be obtained

from the other by successive transpositions of neighboring
independent letters. As is known the defined equivalence is a
congruence and operation is defined as follows: [s][t] = [st].
Then the set M(Σ, D) of equivalence classes of strings from
Σ∗ under ∼

I
is a trace monoid, and its elements are called

traces. A trace t is denoted by [x] for any representative
string x ∈ t. The length |t| of a trace t is the length of any
of its representatives x ∈ t. For any string x ∈ Σ∗ we denote
by |x| the length of x, by |x|a the number of occurrences of
the letter a in the string x.

In the sequel we need two representations of traces: repre-
sentation by a tuple of strings and representation by depen-
dence graph.

Every trace t ∈ M(Σ, D) has unique representation as a
labeled directed acyclic graph Gt defining a labeled partial
order. Graph Gt is defined recursively: Ge is empty graph.
Gt[a] arises from the graph Gt by adding to it a node labeled
with symbol a and new edges leading to it from all nodes of
Gt labeled with symbols that a causally depends on. The
graph Gt is called dependence graph.

The graph Gt can be related to the set of strings induced
by all causal orderings of Gt. This set of strings composes
the trace t.

The second representation of a trace - by a tuple of strings.

Let {Σ1, . . . , Σm} be a clique cover of the dependence al-
phabet (Σ, D), that is a family of subsets of Σ such that

m⋃
i=1

Σi = Σ, Σi × Σi ⊂ D (i = 1, 2, . . . , m),

(a, b) ∈ D ⇔ ∃ i : a, b ∈ Σi.



Then trace t ∈ M(Σ, D) can be represented by a m-tuple of
strings

π(t) = {π1(t), . . . , πm(t)},
where πi(t) ∈ Σ∗i , and πi(t) is the projection of any string
y ∈ t to Σi [11].

Given two traces p, t ∈ M(Σ, D) we say that p is a prefix of
t if t = pq where q ∈ M(Σ, D). We denote by Pref(t) the
set of prefixes of trace t. If t = pqr where p, q, r ∈ M(Σ, D)
then q is called a factor of t. Note that if p ∈ Pref(t)
then exist x, y ∈ Σ∗ such that t = [y], p = [x] and x is a
string-prefix of y.

Let a trace t be given by its representation π(t) . Then we
can represent any prefix s of t (with respect to π(t)) by the
integer array denoted by s = (k1, . . . , km) ∈ Nm keeping in
mind that ki = |πi(s)|, (i = 1, . . . , m) and πi(s) is string-
prefix of πi(t) of length ki. Thus (0, 0, . . . , 0) = e represents
the empty prefix e , while the whole trace t is represented
by t = (n1, . . . , nm) where ni = |πi(t)| [5].

The graph of prefixes of the trace t is a directed acyclic
graph Gpref (t) = (V, U, µ) with labeled edges, such that
V = {s |s ∈ Pref(t)}, U is the set of ordered pairs (s, r),
µ is the edge labeling function and the edge (s, r) has label
a ∈ Σ, if

s, r ∈ Pref(t),
s = r[a].

where [a] is the trace that consists of single one-letter string
a.

Below we need the definitions of automata, processing traces
[11].

For the monoid M = M(Σ, D) an M -automaton A =
(M, Q, δ, q0, F ) consists of a finite set Q of states, an initial
state q0 ∈ Q, a subset F ⊆ Q of final states, and a tran-
sition function δ from Q ×M to Q satisfying the following
conditions:

∀q ∈ Q : δ(q, e) = q, (e is empty trace),
∀q ∈ Q, ∀t1, t2 ∈ M(Σ, D) : δ(q, t1t2) = δ(δ(q, t1), t2).

The set of traces T ⊆ M = M(Σ, D) recognized by an au-
tomaton A is defined by T = {t ∈ M |δ(q0, t) ∈ F}.

Zielonka’s Automaton (asynchronous automaton over M)
is a M -automaton A = (M, Q, δ, q0, F ) which satisfies the
following additional conditions:

1. The state set Q is a cartesian product Q =
n∏

i=1

Qi.

2. With each a ∈ Σ there is an associated index set
K(a) ⊆ {i |i ∈ {1, 2, . . . , n}} such that K(a)∩K(b) =
Ø iff (a, b) ∈ I.

3. Transition mapping δ is given by a collection of par-
tially defined mappings

{δa :
∏

i∈K(a)

Qi →
∏

i∈K(a)

Qi}a∈Σ,

¿From now on we fix the monoid M = M(Σ, D), the clique
cover {Σ1, . . . , Σm} of (Σ, D) and the integer m- the number
of cliques in the clique cover.

3. INCLUSION OF TRACES
We start with the definition of the term inclusion of traces
and then study the inclusion problem.

Definition.

Trace p is included in trace t if for some ti, pi ∈ M(Σ, D)
, i = 0, . . . , n holds

t = t0p1t1 . . . tn−1pntn, (1)

p = p1p2 . . . pn. (2)

In this case we say also that t contains p and write p ⊂ t.
The representation (1) we call inclusion.

Inclusion problem. Given two traces p, t ∈ M(Σ, D), to
decide whether p is included in t.

Let some r be a prefix of trace t : r ∈ Pref(t). We denote
by Rt(r) the set of labels of edges outgoing from the node
r in the graph of prefixes Gpref (t). Hence a ∈ Rt(r) ⇔ s =
r[a] ∈ Pref(t).

To any a ∈ Σ we associate an index set J(a) = {i ∈
{1, 2, . . . m}|a ∈ Σi} such as (a, b) ∈ I ⇔ J(a) ∩ J(b) = ∅.

Statement 1. Let a trace t be given by its representation
π(t) = {π1(t), . . . , πm(t)} where πi(t) = πi,1(t) . . . πi,ni(t) ∈
Σ∗i .

1.1 If r ∈ Pref(t), z ∈ Σ∗ then s = r[z] ∈ Pref(t) iff
there is a directed path in Gpref (t) from r to s that carries
the string z.

A path in Gpref (t) is a maximal path iff it carries some
string z ∈ t.

1.2 For any r ∈ Pref(t) if r = (k1, . . . , km) then the set
Rt(r) may be computed as

Rt(r) = {a | i ∈ J(a) ⇒ πi,ki+1 = a}.

1.3 For any r ∈ Pref(t) and a ∈ Rt(r) if r = (k1, . . . , km)
then representation s=r[a]= (k′1, . . . , k

′
m) can be computed

as

k′i = ki if i 6∈ J(a),

k′i = ki + 1 if i ∈ J(a),

i = 1, 2, . . . , m.

1.4 For any r ∈ Pref(t) and (a, b) ∈ I, a ∈ Rt(r) and
s = r[a] holds:

b ∈ Rt(s) ⇔ b ∈ Rt(r),

r[a][b] = r[b][a].

Let p, t ∈ M(Σ, D). It is a question of construction two M-
automata solving inclusion problem. The first automaton
A(p) is determined by the pattern p and recognizes the target
t ∈ M(Σ, D) iff p is included in t.

The second automaton B(t) is determined by the target t
and recognizes the pattern p ∈ M(Σ, D) iff p is included in
t.



We suppose |t| > |p| > 1.

Statement 2. For any trace p ∈ M(Σ, D) there exists a
deterministic asynchronous Zielonka’s automaton A(p) that
recognizes t ∈ M(Σ, D) if and only if p ⊂ t.

Statement 3. There exists an on-line algorithm to solve
inclusion problem p ⊂ t with time complexity O(m|t|) for
any p, t ∈ M(Σ, D) represented by strings x ∈ p and y ∈ t.
The space complexity is O(m|p|).

This algorithm serves for a base of the following counting
algorithms in sections 3, 4.

Statement 4. Let p, t ∈ M(Σ, D).

4.1. p ⊂ t iff the dependence graph Gp is a subgraph of
dependence graph Gt.

4.2. p ⊂ t iff for every string y ∈ t there is a string x ∈ p
such that x is a subsequence of the string y.

Proof. It is clear that 4.1 implies 4.2. Proof is straightfor-
ward from definitions.

Remark. The validity of p ⊂ t does not imply that for
every string x ∈ p there is a string y ∈ t such that x is a
subsequence of y. Here is an example.

Example. Consider the monoid M(Σ, D) where D = {(a, b), (b, c)} , Σ =
{a, b, c}. Let t = [abc]. The trace t is composed of single
string y = abc. If p = [ac] then the string ca ∈ p, however
the string ca is not subsequence of y.

Let s, t ∈ M(Σ, D). By statement 4.1 and definition of
inclusion, s ⊂ t if and only if for any strings x = a1 . . . a|s| ∈
s, y = b1 . . . b|t| ∈ t there exists an embedding of index sets
ϕxy : Xs → Xt (here Xs = {1, . . . , |s|}, Xt = {1, . . . , |t|} )
such that

1) ϕx,y preserves the label : ai = bϕx,y(i),

2) ϕx,y preserves the order of Gp:

if i <Gp j and (ai, aj) ∈ D then ϕx,y(i) < ϕx,y(j). (3)

We call such embedding correct.

Let an arbitrary X ⊆ Xt. Denote by X =
⋃K

k=0
Yk, where

Y0 = X, Yk = {i ∈ Xt | ∃j ∈ Yk−1 : i < j, (yi, yj) ∈ D}.

Statement 5. Let s, t ∈ M(Σ, D), x = a1 . . . a|s| ∈ s, y =
b1 . . . b|t| ∈ t .

If s ⊂ t, a ∈ Σ, then s[a] ⊂ t if and only if

∃ i0 ≤ |t| : bi0 = a, i0 6∈ ϕxy(Xs). (4)

Algorithm 2 for inclusion problem.

In accordance to Statement 5, algorithm scans the string

x = a1 . . . a|p| reading each letter once and transforming the
string y into a sequence of strings y0 = y, y1, . . . , y|p|. On
i−st step (i = 1, . . . , |p|) when reading ai, the string yi−1

is transformed as follows: if yi−1 = b1 . . . bn then the next
string yi = b′1 . . . b′n′ is obtained from yi−1 by deleting the

letters of the set {bi0} where bi0 is the first occurence of the
letter ai in the string yi−1, i.e., ai = bi0 .

The time complexity of the algorithm is O(|p||t|), the space
complexity is O(|t|+ |p|).

Statement 6. For any trace t ∈ M(Σ, D) there exists a
deterministic asynchronous Zielonka’s automaton B(t) that
recognizes p ∈ M(Σ, D) if and only if p ⊂ t.

4. COUNTING W -TRACE-WINDOWS CON-
TAINING PATTERN

The problem. Given two traces p , t ∈ M(Σ, D) repre-
sented by their representative-strings x ∈ p and y ∈ t, count
the number of w-trace-windows of y ∈ t containing pattern
trace p.

Definitions. Let the string y = b1 . . . bn ∈ Σ∗. A
w- string-window of size w on string y is a substring
bi+1 . . . bi+w, (i = 0, . . . , n − w) of length w. The trace
[bi+1 . . . bi+w] is a w-trace-window of size w of the string
y.

Remark. Evidently the number of w-windows containing p
can be different for strings y, y′ ∈ t if y 6= y′ even if y ∼

I
y′.

A stamped prefix of p ∈ M(Σ, D) is an ordered pair (r, n)
where r ∈ Pref(p), n ∈ N . A configuration is a sequence
of stamped prefixes of p ∈ M(Σ, D).

Statement 7. There exists an algorithm counting the
number of w-trace-windows of string y ∈ t, containing trace
p represented by a string x ∈ p. Time complexity of this
algorithm is O(mw|t|), the space-complexity is O(|w||p|).

Idea of algorithm. Scanning the string y = b1 . . . bn ∈ Σ∗

the algorithm constructs successive configurations Ci for ev-
ery letter bi of y . A stamped prefix (r, u) (r ∈ Pref(p)) en-
ters the configuration Ci iff the trace-window [bi−u+1 . . . bi]
of length u ≤ w contains the prefix r. Clearly, given Ci

and bi+1 it is possible to count Ci+1. If Ci contains a
stamped prefix (p, u) where u ≤ w then the w-trace-window
[bi−w+1 . . . bi] contains p.

5. COUNTING THE NUMBER OF MINIMAL
FACTORS CONTAINING PATTERN

Let (1) and (2) be valid, i.e., p ⊂ t. The factor f =
p1t1 . . . tn−1pn of trace t containing p is minimal if each
proper factor of the trace f does not contain p.

The problem. Given two traces p, t ∈ M(Σ, D) repre-
sented by strings x ∈ p and y ∈ t, count the number of
different minimal factors of the trace t containing the trace
p.

Statement 8. There exists an algorithm counting the
number of minimal factors of the trace t containing the trace
p. The time complexity of the algorithm is O(m|t|2), the
space-complexity is O(|t|).



Idea of algorithm. Let t = qrs and q, r, s, p ∈ M(Σ, D)
and r be a minimal factor of t containing p. Then for each
string y = b1 . . . b|t| ∈ t there exists a trace-window (with-
out restriction on the length) [bk . . . bl] such that p ⊂ r ⊂
[bk . . . bl].

Evidently, the number of minimal factors of the trace t if
t = [y] is equal to the number of such substrings of y whose
proper trace-substrings do not contain p. Thus we need
to find and count such minimal substrings. Scanning the
string y, algorithm associates to each letter bi of the string
y a configuration

Ci = (r1, . . . , rl), rk ∈ Pref(p), k = 1, . . . , l,

i.e., sequence of prefixes of p ∈ M(Σ, D) (not the stamped
prefixes as in the previous section) such that rk ⊂ [bvk . . . bi]
and v1 < . . . < vl < i. Suppose that for some j ∈ {1, . . . , l}
holds:

p ⊂ r1, . . . , p ⊂ rj , p 6⊂ rj+1, 1 ≤ j ≤ l. (5)

Then all [bvk . . . bi] for k ≤ j contain the same minimal trace-
factor of the t , a trace-factor of y containing minimal trace-
factor of t is found out and the counter must be increased
by 1. It is possible to consider only trace-windows [bk . . . bl]
with bk ∈ Rp(e).

The configuration Ci+1 for j, satisfying (5), is constructed
as follows :

If Ci = (r1, . . . , rl) and bi+1 = a, put sk = rj+k[a] if rj+k[a] ∈
Pref(p) and

sk = rj+k if rj+k[a] 6∈ Pref(p) for k = 1, . . . , l− j. Then

Ci+1 = (s1, . . . , sl−j) if a /∈ Rp(e), j < l,

Ci+1 = (s1, . . . , sl−j , [a]) if a ∈ Rp(e), j < l

Ci+1 = {e} if j = l, a /∈ Rp(e),

Ci+1 = {[a]} if j = l, a ∈ Rp(e),

where e is empty string.

So scanning the string y we can count the number of minimal
factors.

Remark. The algorithm only counts the number of minimal
factors, not minimal factors themselves. To obtain the min-
imal factors of t we need to accomplish the algorithm by a
procedure that deletes from the minimal substrings redun-
dant letters. This will increase the complexity to O(m|t|3).
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