
Hybrid Logic for expressing XML schemas with typed references.

Nicole Bidoit
Université Paris Sud, UMR 8623, Orsay F-91405

CNRS, UMR 8623, Orsay F-91405

e-mail: nicole.bidoit[at]lri.fr

Dario Colazzo
Université Paris Sud, UMR 8623, Orsay F-91405

CNRS, UMR 8623, Orsay F-91405

e-mail: dario.colazzo[at]lri.fr

ABSTRACT
The aim of the paper is to provide a fully general notion of
schema capturing well-typed references, called ref-schemas,
allowing for general regular expressions The main contribu-
tion of the paper is to show that ref-schemas are expressible
in Hybrid Modal Logic which entails that tools like for in-
stance the tableau system developed in [9] can be used in
order to check for constraint satisfiability in presence of ref-
schemas.

1. INTRODUCTION
Hybrid Modal Logic (HML)[10, 12, 24, 20, 25] is a modal
logic whose main distinctive features lie in its ability of nam-
ing states of a model, and on the possibility of using state
names in order to easily and directly express properties re-
lating multiples model states. HML was previously inves-
tigated by [1, 18] for expressing constraints on XML data.
The work in [7] shows that HML is powerfull enough to ex-
press general constraints subsuming path contraints [14]. In
a way, these schemas further called normalized ref-schemas
extend normalized DTDs [5].Along the lines of [7], in this
paper we focus on the problem of expressing XML schemas
by means of HML. We show that HML is able to fully cap-
ture the expressive power XML schemas where element con-
tent is described by means of unordered (or commutative)
Regular Expressions (REs in the following). This is not ob-
vious since HML does not directly provide mechanism to
describe properties like mutual exclusion, expressed by REs
of the form r+s (union), or co-occurrence properties, gener-
ally expressed by REs of the form r&s, where & is the un-
ordered (or shuffle) concatenation operator. Previous works
[19] show how these properties can be captured by some ad-
hoc variable-free logic when severe restrictions are posed on
the structure of REs.
Here, in order to fully characterize unordered REs by means
of HML, we will proceed in three subsequent steps. Essen-
tially, given a RE r we will first show how to obtain an
expression r′ which is an over-approximation of r, obtained
by relaxing co-occurrence constraints; we then show how
to derive from r′, an HML formula φr′ which preserves r′

meaning, by using some techniques provided in [7]; finally,
we show how the use of HML mechanism like ↓ and @ can
lead us to recover co-occurrence constraints in a formula σr,
and missing in r′, so that the meaning of r will be given
by the conjunction φr′ ∧ σr. The paper is organized as fol-
lows. The next section is devoted to a short introduction to
Hybrid Modal Logic. Section 3 introduces general schemas
capturing references as “first class citizen” and then shows
how general ref-schema can be expressed in HML. Section 4
discusses related work and further research directions.

2. PRELIMINARIES
We assume the reader familiar with modal logics and just
recall here the main features of Hybrid modal logic (HML)
[11, 2, 3]. Previous work [1, 18, 16, 7] have investigated a
modal logic approach to model semistructured data which
is naturally motivated by the fact that such data are com-
monly viewed as edge labelled graphs thus as Kripke mod-
els [22]. Although modal logic is a simple formalism for
working with graphs, it has no mechanism for referring to
and reasoning about the individual nodes in such struc-
tures. HML increases the effectiveness of modal logic by
allowing one to grasp the nodes via formulas.This is made
possible by four fundamental features: (1) a nominal or a
state variable is a special atomic formula that names or de-
notes the unique state where the formula holds; (2) in @uψ,
the satisfaction operator @u enables to check the formula ψ
at the state named (or denoted) by the nominal (or state
variable) u; (3) in ↓x ψ, the binder operator ↓x binds, in
ψ, the state variable x to the current state. The alphabet
of a HML language is given by four disjoint sets: proposi-
tions PROP={p, q, · · · }, nominals NOM={a, b, · · · }, state
variables SVAR={x, y, · · · } and labels E={e1, ..., en}. Well
formed formulas (wffs) are recursively defined by: (i) each
proposition p is a wff, (ii) each nominal a and each state
variable x is a wff, (iii) assuming that ψ1 and ψ2 are wffs,
then the following expressions are wffs: ¬ψ1, ψ1 ∧ ψ2, [e]ψ1

where e is a label, Gψ1, ↓x ψ1 where x is a state variable,
@uψ1 where u is either a nominal or a state variable.
A model (a document) M of HML is a Kripke structure
(S, r,R, V, Inom) where: S is a finite set of states (the nodes
of the document) containing a distinguished element r (the
root of the document); R = {re|e∈E} is a set of binary ac-
cessibility relations on S (the labelled edges of the document
linking nodes); the function V :PROP → Pow(S) assignes
to each proposition p the set of states where p holds (the data
component of the document); the function Inom:NOM → S
assignes a unique state to each nominal.
A valuation g : SVAR → S assignes a state to each state
variable. By g

x
∼ g′ we denote that g′ is a x-variant of g.

A model M satisfies the wff ψ at state s wrt a valuation g,
denoted by M, g, s |= ψ, iff:
−ψ is p and s∈V (p), where p∈PROP
−ψ is a and Inom(a) = s

−ψ is x and g(x) = s
−ψ is ψ1 ∧ ψ2 and M, g, s |= ψ1 and M, g, s |= ψ2

−ψ is ¬ψ and M, g, s 6|=ψ
−ψ is [e]ψ and for any s′∈S, (s, s′)∈re implies M, g, s′ |= ψ
−ψ is Gψ and for any s′∈S accessible from s (by a path),
we have: M, g, s′ |= ψ

−ψ is ↓x ψ and M, g′, s |= ψ with g
x
∼ g′, g′(x) = s

−ψ is @xψ and M, g, g(x) |= ψ
−ψ is @aψ and M, g, Inom(a) |= ψ

The modalities 〈e〉, F , G∗ and F ∗ are defined1 by: 〈e〉ψ =def

¬[e]¬ψ and Fψ =def ¬G¬ψ, G∗ψ =def ψ ∧ Gψ and
F ∗ψ =def ψ ∨ Fψ.

XML document and references
In general, XML documents are modeled by ordered trees.
Here, in order have a simpler representation of references,
we prefer to use a graph representation. An XML document
with references is represented in Figure 1 as a simple rooted
graph with two kinds of labelled edges: plain edges and
dashed ones. First of all, let us look at the graph restricted
to plain edges, further called child edges : notice that it is a
tree like XML documents are (except that XML documents
are ordered). The root node (named r) has 3 (unnamed)
children, all of them being connected to r through a child
edge labbed by e. The dashed edges represent references,
that is ”pointers” from elements to elements. Next, dashed
edges will be simply called references. The left most child
of the root r is the source of a reference labelled by −→r . For
the sake of the presentation, a node of a document which is
the target of a ẽ labelled child edge is called a ẽ-node. All
three child nodes of the root r are e-nodes.

r

e

p

65

e

75

e

85

e

35

e

e

o

25

e

o

75

e

95

e

15

e

e

45

p

−→
r −→

r

−→
r

Figure 1. A document

From now on, we make the assumption that a document
with references is always build from a simple one (a rooted
unordered labelled tree). It explains the distinction made
between child edges (those of the tree) and references (those
connecting elements). Indeed, our data model is comparable
to the OEM data model.
The document of Figure 1 can also be seen as the represen-
tation of some Kripke model M. The root of the document
will be captured by the use, in our language, of a unique
nominal root and hence, here root will be interpreted by r
that is Inom(root)=r. This assumption is made in the rest
of the paper. Note that, the Kripke model M of Figure 1
does not contain any proposition except for the data appear-
ing in the leaves of the underlying tree. Propositions will be
used later on for marking nodes of the document.

3. WELL-TYPED REFERENCES
This section is devoted to the presentation of a general no-
tion of schema a la DTD capturing well typed references.
Next, we assume that V is a finite set of non-terminal sym-
bols, containing the symbol Start, and the empty word Λ.
By convention, a non terminal symbol starts with a capital
letter while a label starts with a non-capital letter. The set

of labels E is partionned in two disjoint sets E and
−→
E : labels

in E are called child labels whereas labels in
−→
E are called

references. We use the following convention: e (resp. −→e , ẽ)
denotes a child label (resp. a reference, any label). For the
sake of the presentation, we avoid to consider base types.

Definition 1 (ref-schema). A ref-schema G is given

by (E ,V, Start, θ) where E=E ∪
−→
E , V and Start are defined

as above and where the typing function θ associates to each

1
We would like to recall here that, because of the use of the modality

G, the HML language considered is no longer a fragment of first order
logic.

non terminal symbol X a regular expression of the form:
R ::= ẽ X | R + R | R & R | R∗ | Λ.

The typing function θ needs to satisfy that: (1) for each
child-label e, Type(e) is a singleton, where Type(ẽ) denotes
the set of non terminals X in elementary patterns ẽX occur-
ring in some type definition given by θ, and (2) for each non
terminal X distinct from Start, Start ⇒∗

G X holds where
⇒∗

G is the transitive closure of the relation ⇒G naturally
defined by X ⇒G Y if Y occurs in θ(X).

Note that condition (1) is the usual one considered for DTD.
Intuitively, condition (2) ensures that all (definitions of)
types are linked to the initial type Start. To simplify the
presentation, the definition of θ is given by ”assignements”
of the form X := R in place of θ(X) = R.
In order to define what are documents conforming to a ref-
schema G, we need to associate to a regular expression R its
extension [[R]].
Given an alphabet A, an unordered word over A is denoted
a1& . . .&an where ai∈A for i = 1..n. It should be under-
stood that for any permutation ρ over [1..n], the two words
a1& . . .&an and aρ(1)& . . .&aρ(n) are equal. The empty
word is denoted by . Given two sets of unordered words
W1 and W2, the unordered concatenation W1&W2 is simply
defined by {w1&w2 | w1∈W1 and w2∈W2}. Obviously, from
the previous property, we have that W1&W2=W2&W1.
The set [[R]] of unordered words build from elementary pat-
terns is defined according to the following equations:
[[ẽX]]={ẽX}, [[R1+R2]]=[[R1]]∪[[R2]], [[R1&R2]]=[[R1]]&[[R2]],
[[R∗]]= ∪n>0 (&i=1..n[[R]])∪{ }, [[Λ]]={ }
We are now ready to formally define what are the instances
of a ref-schema. Recall that a document is a (Kripke) model.

Definition 2. Let M = (S, r,R, V, Inom) be a finite model
and G = (E ,V, Start, θ) be a ref-schema. We say that M

satisfies the ref-schema G, denoted M : G, if:
(1) the model M restricted to the relations re where e is a
child label, is a tree, and
(2) there exists a total mapping ϑ : S → V such that:
(a) ϑ(r) = Start,
(b) forall n∈S, if ϑ(n)=X and θ(X)=R, then &ẽY ∈Γn

{ẽY }∈[[R]]
where Γn={{ẽY | (n, n′)∈Rẽ and Y = ϑ(n′)}}.

The document M of Figure 1 conforms to the ref-schema G
specified by:

Start := (e X)∗

X := (p Y + o Z)∗ & (−→r Y + −→r Z)∗

Y := (e X & e X)∗

Z := (e X & e X)∗ & (e X)
The ref-schema G.

Flat ref-schemas.
For the sake of translating ref-schemas into HML formulas,
and indeed in order to associated a normalized ref-schema
to a ref-schema, we proceed to a simplication of the regular
expressions, called flattening, which is only possible because
of the unordered assumption.

Lemma 3. Let R be a regular expression. There exists a
flattened expression Flat(R) such that [[R]] = [[Flat(R)]] where
a flattened expression is defined according to the grammar:
R ::= B | R + R A ::= ẽ X | A & A
B ::= ẽ X | B & B | A∗ | Λ

Marked flat ref-schemas.
Next, wlog, all expressions considered are flattened ones. A
last slight modification of expressions is needed in order to
cope with the following situation: in a ref-schema G, it may

happen that an elementary pattern (ẽX) has multiple occur-
rences. Rather than disallowing such cases and in order to
keep our framework fully general, we introduce markers in
order to distinguish these occurrences. Markers are propo-
sitions. They are introduced in the definition of flattened
regular expression by replacing ẽX by (ẽ, q)X where q is a
proposition symbol of the language.

Definitions 1 and 2 of a ref-schema and of ref-schema in-
stances need to be sligthly modified. The changes are tech-
nical but not very deep. Thus:
• A marked ref-schema G is given by (Prop, E ,V, Start, θ)
where Prop is a finite set of proposition symbols and θ as-
sociates to each non terminal symbol X a marked flattened
regular expression with conditions (1) and (2) of Definition
1 plus the following one2:
(3) if (ẽ, q1)X and (f̃ , q2)Y occurs in some type definitions
in G then q1 6= q2.
• In the definition of the extension [[R]] of R, the case of
[[ẽX]] is now replaced by [[(ẽ, q)X]]={(ẽ, q)X}.
• Finally, in definition 2, the statement of condition (b) is
changed to: forall n∈S, if ϑ(n)=X and θ(X)=R, then there
exists a word w∈[[R]] such that there exists a bijection β
from w (considered as a multiset) to {(ẽ, n′) | (n, n′)∈Rẽ}
such that for each (ẽ, q)Y ∈ ω, we have β((ẽ, q)Y)=(ẽ, n′)
implies ϑ(n′)=Y and q∈V (n′).

Intuitively, if we consider a finite state automata associated
to the schema, markers qi can be seen as unique identifiers
of automata states (assume that each ẽX corresponds to an
automata state). Then, over schema instances, the set of
qi’s associated to each node represent the set of automata
states that successfully recognised that node (a node can be
analized in multiple states due to references). So proposition
symbols associated to the instance nodes can actually be
seen as a successful run of the schema automata.
For the sake of simplicity, in the following, we will omit
the marker q for elementary pattern ẽX that have a single
occurence.

Lemma 4. Let G be a flat ref-schema defined over L and
let Gmark be a marked ref-schema associated with G. Then:
(1) for each model M : G, there exists a model N : Gmark

such that M = N|L, and
(2) for each model N : Gmark, we have N|L : G where N|L

denotes the restriction of the Kripke structure N to edges
whose labels are in L and to proposition assignments for
propositions in L.

Normalized ref-schema.
[7] introduces schemas capturing well-typed references in a
limited way. Intuitively, these schemas, further called nor-
malized ref-schemas3 do not allow one for fully general ex-
pression and can be viewed as an extension of the normalized
DTD of [5] with well typed references. The main contribu-
tion of [7] is to show that documents conforming to a given
normalized ref-schemas G are exactly the finite Kripke mod-
els satisfying a HML wff τG .

Definition 5. A normalized ref-schema (E ,V, Start, θ) is
a (marked) ref-schema based on the normalized regular ex-
pressions defined by:
R := B | R + R and
B := Λ | ((ẽ, q)X)op | B & B:= where op is either ! or ∗.

For instance, normalized ref-schema forbid expression of the
following form: ((ẽ1, q1)X1& · · ·&(ẽk, qk)Xk))∗.
The next result was proved in [7] although without markers.
Because of space limitation, it is stated without proof.

2Condition (3) should hold for any X and Y , even if X=Y
3In [7], they are called pattern schemas.

Theorem 6. [7] Let G be a normalized ref-schema. There
exist an HML wff τG such that for any model (document)
M, we have: M : G iff M, g, r |= τG where g is any state
variable valuation.

Capturing Ref-schemas by HML
We now show that HML is powerfull enough to express ref-
schemas. Intuitively, we show that a ref-schema is equiva-
lent to a normalized ref-schema together with a constraint.
From the previous section, we know that a normalized ref-
schema can be equivalently specified by an HML formula.
This yields to expressing a general ref-schema in HML.
The next result formalizes the fact that general ref-schemas
are expressible in HML although stating this result requires
to put some restriction over references in the type definition.
A ref-schema G is said ref-normalized if, in the flattened type
definitions θ(X) of each type X, elementary patterns −→e Y
only occur in simple expressions either of the form (−→e Y)∗

or of the form (−→e Y)!.

Theorem 7. Let G be a ref-schema over L. If G is ref-
normalized then there exists a normalized ref-schema Gnorm

and a constraint given by an HML formula CG such that:
(1) for each model M : G, there exists a model N : Gnorm

such that: N , g, r |= CG and N|L=M.
(2) for each model N : Gnorm such that N , g, r |= CG, we
have that N|L : G.
Above, N|L denotes the restriction of the Kripke structure N
to edges whose labels are in L and to proposition assignments
for propositions in L as well.

Intuitively, the theorem above states a strong correspon-
dence between G and Gnorm ”plus” CG implying, to some
extends, that it does not make any difference to work with
a document conforming to G or to work with a document
conforming to Gnorm as soon as it satisfies the structural
constraint CG.
Theorem 7 also entails that the ref-schema G (when it is a
ref-normalized schema) can be captured by the HML for-
mula τGnorm

∧ CG .

Corollary 8. Let G be a ref-normalized schema. There ex-
ists an HML formula τG such that4, for any HLM formula ϕ
over the language induced by G, the two following statement
are equivalent:
(1) there exists M such that M : G and M |= ϕ

(2) there exists N such that N |= τG ∧ ϕ.

It may be useful for the reader to note that, Theorem 7
allows for the following situation: it may be the case that a
model N conforms to the normalized ref-schema Gnorm and
moreover that N|L : G although N 6|= CG .

4. RELATED WORKS
Most of existing type languages for XML disregard the prob-
lem of typing references. Concerning type languages assum-
ing sequence ordering, languages like DTD and all languages
a la XDuce/CDuce [21, 6] do not permit to describe data
with typed references. Concerning type languages not as-
suming sequence ordering, probably the most relevant one
is the TQL language [15], which does not contain mecha-
nisms to define references.
Besides the previous work [8], quite a few studies address
typing mechanisms for references for semistructred / XML
data. XML Schema [23] contains some mechanisms to type
references. They do not allow one to specify references and
their target type in a flexible and direct manner. Indeed,
XML Schema uses XPath to specify typed references. XPath
[17] is a rather complex, requires a good amount of exper-
tize to be used correctly and moreover, reasoning about con-
straints defined with XPath is highly intricate, if not impos-
sible. XML Schema does not allow one to specify references
4Indeed, τG ≡def τGnorm

∧ CG

whose target elements are possibly of different type. No
mechanism is provided to define and check generic integrity
constraints.
Simeon and Fan [17] propose an extension of DTD able
to model classical relational and object oriented referential
constraints. (key constraints and foreign-key constraints).
Their approach and that of XML are closely related. Rather
negative results concerning decidability for key and foreign-
key constraints have been showed in [4].
The work [13] provides another interesting approach to the
logical characterization of XML schemas and constraints.
Their work proposes a decidable logic able to model inclu-
sion constraints only over one attribute, otherwise decidabil-
ity is lost. As stated in [13], if the proposed decidable logic is
extended with navigational mechanisms like G, decidability
is not proved to hold (it is an open problem). However, in
our context, we are quite confident that this property holds
for a wide class of constraints (involving F and G) under
the assumption that data are constrained by a schema, and
currently we are actively investigating this possibility.
Finally, a further difference wrt [13] , and works referenced
therein, is that while [13] deals with ordered XML docu-
ments, we are concerned with database issues, where order-
ing is uninfluential.

To summarize, the aim of our study is to pave the way to a
unique logical framework, allowing to deal with type and in-
tegrity constraints (as well as with queries) at the same time
and in a clear, simple and flexible way. We would like to out-
line that the present work should not to be intended as yet
another formalism to describe XML data with well-typed
references, although ref-schemas are elegant extensions of
DTDs. Indeed, this work presents basic techniques that can
be easily extended in order to obtain HML logical character-
isation of schemata defined according to existing techniques,
like the two above cited ones, and of generic XML structural
constraints . As stated in Section 3, this allows the use of
existing techniques [9] to formally check important proper-
ties like constraint implication and constraint consistency in
a unique framework, without the need of developing poten-
tial complex and error prone tools to cope with formalisms
of different nature, like, say, DTD for types and XPath for
constraints [23].

One of the limitation of our framework is that, currently,
we are not able to manage sequence ordering. This is not a
strong limitation because the class of database applications
where XML sequence ordering is non-influential is quite wide.
However, HML seems able to describe sequence ordering as
well, by using techniques similar to those we used to encode
co-occurrences properties.

5. ACKNOWLEDGEMENT
This work has been partially funded by the ANR Project
Codex (DEFIS 2008).

REFERENCES
[1] N. Alechina, S. Demri, and M. De Rijke. Path constraints

from a modal logic point of view. In Proc. of the 8th Int.
Workshop on Knowledge Representation meets Databases,
2001.

[2] C. Areces, P. Blackburn, and M. Marx. Road-map on
complexity for hybrid logics. In Proc. of the 8th Annual
Conf. of the EACSL, pages 307–321. LNCS, Springer, 1999.

[3] C. Areces, P. Blackburn, and M. Marx. Hybrid logics:
Characterization, interpolation and complexity. J. of
Symbolic Logic, 66(3):977–1010, 2001.

[4] M. Arenas, W. Fan, and L. Libkin. Consistency of xml
specifications. In Inconsistency Tolerance, pages 15–41,
2005.

[5] M. Benedikt, W. Fan, and F. Geerts. Xpath satisfiability in
the presence of dtds. In Proc. of the 24th Symp. on
Principles of Database Systems, pages 25–36. ACM
SIGACT-SIGMOD-SIGART, 2005.

[6] V. Benzaken, G. Castagna, and A. Frisch. Cduce: an
xml-centric general-purpose language. In C. Runciman and
O. Shivers, editors, ICFP, pages 51–63. ACM, 2003.

[7] N. Bidoit, S. Cerrito, and V. Thion. A first step towards
modeling semistructured data in hybrid multimodal logic.
J. of Applied Non-Classical Logics, 14(4):447–476, 2004.

[8] N. Bidoit, S. Cerrito, and V. Thion. A first step towards
modeling semistructured data in hybrid multimodal logic.
Journal of Applied Non-Classical Logics, 14(4):447–475,
2004.

[9] N. Bidoit and D. Colazzo. Testing xml constraint
satisfiability. Hylo, 2006.

[10] P. Blackburn. Representation, reasoning, and relational
structures: a hybrid logic manifesto. Logic J. of the IGPL,
8(3):339–365, 2000.

[11] P. Blackburn and J. Seligman. Hybrid languages. J. of
Logic, Language and Information, 4:251–272, 1995.

[12] P. Blackburn, J. van Benthem, and F. Wolter, editors.
Handbook of Modal Logic, volume 3. Elsevier, 2007.

[13] M. Bojanczyk, C. David, A. Muscholl, T. Schwentick, and
L. Segoufin. Two-variable logic on data trees and xml
reasoning. In PODS, pages 10–19, 2006.

[14] P. Buneman, W. Fan, and S. Weinstein. Path constraints
on semistructured and structured data. In Proc. of the 17th
Symp. on Principles of Database Systems, pages 129–138.
ACM SIGACT-SIGMOD-SIGART, 1998.

[15] G. Conforti, G. Ghelli, A. Albano, D. Colazzo, P. Manghi,
and C. Sartiani. The query language tql. In WebDB, pages
13–18, 2002.

[16] S. Demri. (modal) logics for semistructured data. In “Third
Workshop on Methods for Modalities. (Invited talk), 2003.

[17] W. Fan and J. Siméon. Integrity constraints for xml. In
PODS, pages 23–34. ACM, 2000.

[18] M. Franceschet and M. De Rijke. Model checking for hybrid
logics. In Workshop Methods for Modalities, 2003.

[19] G. Ghelli, D. Colazzo, and C. Sartiani. Efficient inclusion
for a class of XML types with interleaving and counting. In
DBPL, 2007.

[20] G. Hoffmann and C. Areces. Htab: A terminating tableaux
system for hybrid logic. In Methods for Modalities
Workshop, 2007.

[21] H. Hosoya and B. C. Pierce. Xduce: A typed xml processing
language (preliminary report). In D. Suciu and G. Vossen,
editors, WebDB (Selected Papers), volume 1997 of Lecture
Notes in Computer Science, pages 226–244. Springer, 2000.

[22] S. Kripke. Semantic Considerations on Modal Logic in
Reference and Modality. Oxford University Press, London,
”1971”.

[23] W. Recommendation. Xml schema. In
http://www.w3.org/TR/xmlschema-0/.

[24] B. ten Cate. Xml from the viewpoint of modal logic. In
Invited talk at the Methods for Modalities Workshop, 2007.

[25] B. ten Cate and M. Franceschet. On the complexity of
hybrid logics with binders. In CSL, pages 339–354, 2005.

