
Efficient Computing of Longest Previous Reverse Factors

Supaporn Chairungsee
King’s College London

London WC2R 2LS, UK

e-mail: supaporn.chairungsee@kcl.ac.uk

Maxime Crochemore
King’s College London

London WC2R 2LS, UK

e-mail: maxime.crochemore@kcl.ac.uk

ABSTRACT
We study the problem of finding the longest previous re-
verse factor occurring at each position of a string. This is
a generalisation of a notion used for the optimal detection
of various types of palindromes in a string. We describe
two algorithms for computing the LPrF table of a string,
one from its Suffix Tree and the second from its Suffix Au-
tomaton respectively. These algorithms run in linear time
on a fixed size alphabet. Typical applications of these algo-
rithms are for RNA secondary structure prediction and for
text compression.

Keywords
longest previous reverse factor, palindrome, Suffix Tree, Suf-
fix Automaton, RNA secondary structure prediction, text
compression

1. INTRODUCTION
The problem is to compute efficiently, for a given string
y, the LPrF table that stores at each index i the maximal
length of factors (subwords) that both start at position i

on y and occur reversed at a smaller position. Here is the
example table for the string y = aababaabab:

position i 0 1 2 3 4 5 6 7 8 9
y[i] a a b a b a a b a b

LPrF[i] 0 1 0 1 3 2 4 3 2 1

The LPrF table is a concept close to the LPF table for which
the previous occurrence in not reversed (see [4]). This lat-
ter table extends the Ziv-Lempel factorisation of a text [10]
intensively used for conservative text compression (see [1]).

The LPrF table generalises a factorisation of strings used
by Kolpakov and Kucherov [8] to extract certain types of
palindromes in molecular sequences. Their palindromes are
of the form uvw where v is a short string and w is the com-
plemented reversed string associated with u (complement
consists in exchanging letters A and U, as well as C and G, the
Watson-Crick pairs of nucleotides). These palindromes play
an important role in RNA secondary structure prediction
because they signal potential hair-pin loops in RNA folding
(see [2]). In addition the reverse complement of a factor has
to be considered up to some degree of approximation.

An additional motivation for considering the LPrF table is
text compression. Indeed, it may be used, in connection
with the LPF table, to improve the Ziv-Lempel factorisa-
tion (basis of several popular compression software, see for
example [9]) by considering reverse factors as well as usual

factors occurrences. The feature has already been imple-
mented in [7] but without LPrF and LPF tables, and our
algorithms provide more time-efficient techniques to com-
press DNA sequences under the scheme.

As far as we know, the LPrF table of a string has never been
considered before. Our source of inspiration was the notion
of LPF table and the optimal methods for computing it in
[4]. It is shown there that the LPF table can be derived from
the Suffix Array of the input string both in linear time and
with only a constant amount of additional extra space. The
Suffix Array of a string is a data structure storing both the
list (of positions) of its suffixes in the lexicographic order and
the maximal length of common prefixes between consecutive
suffixes in the list (see [3]).

In this note, we present algorithms for computing efficiently
the LPrF table of a string from its Suffix Tree and from
its Suffix Automaton, respectively. The algorithms run in
linear time, that is, O(n) time for a string of length n, pro-
vided the alphabet is of fixed size. On a general alphabet
the running time becomes O(n log a) where a is the number
of different letters occurring in the input string. Note that
a straightforward algorithm would run in cubic time, or in
quadratic time if a linear-time string-matching algorithm is
used. So, we get the same running time as the algorithm
described in [8] for the corresponding factorisation although
our algorithm produces more information stored in the ta-
ble and ready to use. Based on it, the factorisations of
strings used for text compression and for designing string
algorithms may be further optimised. Our algorithms rely
on a clever usage of the notion of suffix links of the data
structures, links that are essential for their linear-time con-
struction but which the factorisation algorithm in [8] does
not take advantage of.

It has been shown recently in [5] that using the Suffix Array
of the input text the computation of the LPrF table can
be done in linear-time on an integer alphabet. The result
relaxes slightly the condition on the alphabet used in the
solutions described below but the algorithm utilises an addi-
tional data structure for answering in constant time Range
Minimum Queries (see for example [6]), which makes the
overall process more complex.

The question of whether a linear-time algorithm exists un-
der the condition of the string being drawn from a general
alphabet seems to be out of reach.

After introducing the notation in the next section, we de-
scribe the LPrF table computation with a Suffix Tree in
Section 3 and with a Suffix Automaton in Section 4. A
conclusion follows.



2. BASIC DEFINITIONS
In this section, we briefly recall the notions of Suffix Trie,
Suffix Tree, Suffix Automaton and then formally define the
LPrF table.

The Suffix Trie of a string is the deterministic automaton
that recognises the set of suffixes of the string and in which
two different paths of same source always have distinct ends
[3]. Thus, the graph structure of the automaton is a tree
whose arcs are labelled by letters. The Suffix Trie of the
string w is denoted by T (w). Its nodes are the factors of
w, the empty string is the initial state (the root), and the
suffixes of w are the terminal states. We define sℓ[q] as the
suffix link of (nonempty) state q. If q = au for some letter
a, then sℓ[q] = u.

Let TC(w) denote the Suffix Tree of w. It is the compacted
version of the Suffix Trie, obtained by deleting the nodes of
degree 1 that are not terminal in the Suffix Trie. The labels
of arcs then become strings of variable positive length and
labels of two edges outgoing the same state start with two
different letters. As above and with the same notation we
denote by sℓ the suffix link of TC(w).

Let S(w) denote the Suffix Automaton of w. It is the min-
imal automaton that accepts the set of suffixes of w. We
define F as the failure link of S(w) and consider the length
function L, informally defined as follows. If state q is associ-
ated with the nonempty string u, F [q] is the state associated
with the longest suffix of u leading from the initial state to
a state different from q. And L[q] denotes maximal length
of labels of path from the initial state to q.

On the string y of positive length n, the LPrF table is de-
fined, for i, 0 ≤ i < n, by: LPrF[i] is the maximal length
of prefixes of y[i . . n − 1] for which the reverse appears in
y[0 . . i − 1]. The prefix is called the Longest Previous re-
verse Factor at position i on y. On the example table above,
LPrF[4] = 3 because the factor baa of length 3 occurs at po-
sition 4, its reverse aab occurs at position 0 in y[0 . . 3], and
no longer factor satisfies the condition.

3. USING A SUFFIX TREE TO COMPUTE
LPRF

In this section we show how the LPrF table can be com-
puted in linear time with the Suffix Tree of the input string.
First, we describe the algorithm using the basic suffix data
structure that is the Suffix Trie of the reverse input. Then,
we show how to modify it to have it run with the Suffix Tree.

The algorithm to compute the LPrF table of y is first de-
scribed with the Suffix Trie of the reverse string yR, T (yR).
Figure 1 displays the Suffix Trie of babaababaa used to com-
pute the LPrF table of the example string aababaabab. Not
shown on the picture, the structure includes the suffix link
recalled above as well as an addition attribute on state men-
tioned below.

The code of the algorithm below uses T (yR), the Suffix Trie
of the string yR. Its initial state is root and its transition
function denoted by δ. It works as follows. At a given step,
i is a position on y, ℓ is the length of the current match,
and q is the current state of the trie. We have the invariant
δ(root , y[i − ℓ . . i − 1]) = q where δ denotes the transition
function of the trie. The condition to extend the match by
the letter a = y[i] is that both δ(q, a) is defined and the
factor y[i − ℓ . . i − 1]a occurs in yR at a position at least
as large as n − i + ℓ. This is tested on the largest position

0

1

2 3 4 5 6 7

8 9

10 11 12 13 14 15

16 17 18

19

20

21 22 23 24 25 26

27 28 29 30 31 32 33 34

a

a

b a b a a

b

a
a

b a a a a

b
a a

b

a a
b a b a a

b
a a b a b a a

Figure 1. The Suffix Trie of babaababaa

associated with the state δ(q, a) and called MaxPos [δ(q, a)].
We assume that this array is pre-computed during a linear-
time traversal of the trie. If the condition is not met, the
first letter of the match is implicitly deleted when using the
suffix link of the trie.

The drawback of using the Suffix Trie of yR is that the struc-
ture may require quadratic memory space. This is why the
solution presented in this section uses the Suffix Tree of yR,
TC(yR), instead (see example in Figure 2). This structure
can be implemented in actual linear space.

0

1

2 3

4

5 6

7

8

9 10

11 12

a

a

babaa

ba

a

babaa

baa

ba

a

babaa

baa

babaa

Figure 2. The Suffix Tree of babaababaa

The attributes of states (sℓ and MaxPos) of the tree in Fig-
ure 2 are given in the following table:

state q 0 1 2 3 4 5 6 7 8 9 10 11 12
sℓ[q] - 0 1 7 8 9 10 11 1 2 7 5 6

MaxPos [q] 10 9 8 3 6 6 1 4 7 7 2 5 0

When using a Suffix Tree instead of a Suffix Trie, the es-
sential difference is in the implementation of the transition
function and of the suffix link. Indeed, in TC(yR), arcs
are of the form (q, (p, k), r) corresponding to the transition
δ(q, y[p . . p + k − 1]) = r. We can then represent states of
the trie by (q, (p, k, k′)) where 0 ≤ k′ < k. If k′ = 0, it is
actually state q itself. Otherwise, we call it a virtual state
and it corresponds to a state of the trie. Implementing a
transition or a suffix link then becomes a simple exercise.
Note that there is no need to compute a suffix link with
a call to the specific procedure used to build the tree and
called Fast-find in [3].



LPrF-tree(y, n)

1 (q, ℓ)← (root , 0)
2 i← 0
3 repeat a← y[i]
4 while (i < n) and (δ(q, a) 6= NULL)

and ((n− i + ℓ) ≤ MaxPos [δ(q, a)]) do

5 (q, ℓ)← (δ(q, a), ℓ + 1)
6 i← i + 1
7 a← y[i]
8 LPrF[i− ℓ]← ℓ

9 if q 6= root then

10 (q, ℓ)← (sℓ[q], ℓ− 1)
11 else i← i + 1
12 until (i = n) and (ℓ = 0)
13 return LPrF

Theorem 1. The algorithm LPrF-tree computes the LPrF
table of a string of length n in time O(n) on a fixed size

alphabet.

Proof. Although not obvious the correctness of the algo-
rithm comes from the discussion above. We evaluate its
running time. The preprocessing comprises the Suffix Tree
construction and the computation of the MaxPos attribute
of its nodes, which are done in linear time by known tech-
niques. After such a preprocessing all instructions, the run-
ning time depends mainly on the number of tests done in
line 4 and the number of operations to compute a suffix link
in line 10. Since each test either leads to increment i or to
increment i−ℓ the position of the current match, whose val-
ues never decrease, there is a linear number of tests. When
a suffix link is computed for a virtual state (q, (p, k, k′)), the
number of letter comparisons is no more than k′. But since
these comparisons have already been done during a previous
test in line 4, the total number of comparisons of letter done
in line 10 is also linear. Which implies the result.

Note that if the alphabet is not fixed, the computation of a
transition from a real state requires O(log a) time, where a

is the size of the alphabet of y, to keep the memory space
linear. This leads to an algorithm which overall running
time is O(n log a).

4. USING A SUFFIX AUTOMATON TO COM-
PUTE LPRF

In this section we present another solution to compute the
LPrF table of the input string y in linear time. It is done
with the Suffix Automaton S(yR). The structure includes
the failure link F and the table L recalled above as well as
an additional attribute on states SC mentioned below.

Figure 3 displays the Suffix Automaton of babaababaa used
for computing the LPrF table of the string aababaabab.

0 1 2 3 4 5 6 7 8 9 10

11

b a b a a b a b a a

a ba b
a

Figure 3. Suffix Automaton of babaababaa

The next table gives the attributes (F , L and SC ) of the
states of the automaton displayed in Figure 3:

state q 0 1 2 3 4 5 6 7 8 9 10 11
F [q] 0 0 11 1 2 11 3 4 3 4 5 0
L[q] 0 1 2 3 4 5 6 7 8 9 10 1

SC [q] 0 2 1 2 1 0 4 3 2 1 0 0

As above, at a given step i is a position on y, ℓ is the length of
the current match, and q is the current state of the automa-
ton. The principal invariant is δ(initial, y[i− ℓ . . i− 1]) = q

where δ denotes the transition function of the automaton
and initial its initial state. The condition to extend the
match by the letter a = y[i] is that δ(q, a) is defined and
that y[i − ℓ . . i − 1]a occurs in yR at a position at least as
large as n − i + ℓ, as before. This can be tested efficiently
on the automaton if the table SC is available. For a state
r, SC [r] is the minimal length of labels of paths from r

to a terminal state. The table can be pre-processed via a
mere traversal of the automaton (see [3]). The test becomes
i−ℓ ≤ ℓ+1+SC [δ(q, a)] where the first member is the length
of y[0 . . i−ℓ−1] and the second member the minimal length
of suffixes of yR starting with the next match.

When the test is negative, the failure link F is applied to
shorten the match whose length is given by L. None of the
suffixes of the match of length larger than L[F [q]], which
all correspond to the same state q, is able to change the
value of the test in line 4. Then, a batch of LPrF values are
computed in lines 8–10.

In the code below we assume that F [initial] = initial . The
value of F [initial] is usually left undefined for Suffix Au-
tomata but the assumption simplifies the presentation of
the algorithm.

LPrF-automaton(y, n)

1 (q, ℓ)← (initial, 0)
2 i← 0
3 repeat a← y[i]
4 while (i < n) and (δ(q, a) 6= NULL)

and ((i− ℓ) ≥ ℓ + 1 + SC [δ(q, a)]) do

5 (q, ℓ)← (δ(q, a), ℓ + 1)
6 i← i + 1
7 a← y[i]
8 repeat LPrF[i− ℓ]← ℓ

9 ℓ← max{0, ℓ− 1}
10 until ℓ = L[F [q]]
11 if q 6= initial then

12 q ← F [q]
13 else i← i + 1
14 until (i = n) and (ℓ = 0)
15 return LPrF

Theorem 2. The algorithm LPrF-automaton computes

the LPrF table of a string of length n in time O(n) on a

fixed size alphabet.

Proof. We evaluate the running time of the algorithm. The
preprocessing consists of the automaton construction with
table F and L, and of the computation of the attribute SC

of its states. All the preprocessing can be done in linear
time (see [3]).
The running time of the rest depends on the number of
tests in line 4 and in line 10. The former either leads to
increment i or to execute the next instruction. The latter
yields an increment of the expression i− ℓ. Since the values
of these two expressions never decrease, only n of them are
executed, which implies the result.

As with the Suffix Tree solution, if the automaton is im-
plemented in linear space, the overall algorithm runs in
O(n log a) time.

Note that the automaton can be built in linear-time if it is
implemented in space O(an) with the technique of sparse



matrix implementation, which would provide a linear-time
solution to the detriment of the memory usage, which is
usually unsatisfactory for applications.

5. CONCLUSION
We have shown that the LPrF table of a string, generalising
the technique used in [8] to locate special types of biologi-
cal palindromes, can be computed in linear time on a fixed
size alphabet and in O(n log a) time otherwise in a linear
memory space.

There is still an interesting open question about the prob-
lem: does there exists a straight computation of the table
using none of the suffix data structures and running in lin-
ear time in the comparison model? A positive answer to this
question is likely to introduce an exciting novel technique in
Stringology.

REFERENCES
[1] T. C. Bell, J. G. Clearly, and I. H. Witten. Text

Compression. Prentice Hall Inc., New Jersey, 1990.

[2] H.-J. Böckenhauer and D. Bongartz. Algorithmic

Aspects of Bioinformatics. Springer, Berlin, 2007.

[3] M. Crochemore, C. Hancart, and T. Lecroq.
Algorithms on Strings. Cambridge University Press,
Cambridge, UK, 2007.

[4] M. Crochemore, L. Ilie, C. Iliopoulos, M. Kubica,
W. Rytter, and T. Waleń. LPF computation revisited.
In J. Kratochvil and M. Miller, editors, International

Workshop on Combinatorial Algorithms, LNCS,
Berlin, 2009. Springer. To appear.

[5] M. Crochemore, C. Iliopoulos, M. Kubica, W. Rytter,
and T. Waleń. Efficient algorithms for two extensions
of the LPF table: the power of Suffix Arrays. 2009.
Submitted.

[6] J. Fischer and V. Heun. Theoretical and practical
improvements on the RMQ-problem, with applications
to LCA and LCE. In M. Lewenstein and G. Valiente,
editors, Combinatorial Pattern Matching, 17th Annual

Symposium, CPM 2006, Barcelona, Spain, July 5–7,

2006, Proceedings, volume 4009 of Lecture Notes in

Computer Science, pages 36–48. Springer, 2006.

[7] S. Grumbach and F. Tahi. Compression of dna
sequences. In Data Compression Conference, pages
340–350, 1993.

[8] R. Kolpakov and G. Kucherov. Searching for gapped
palindromes. In P. Ferragina and G. M. Landau,
editors, Combinatorial Pattern Matching, 19th Annual

Symposium, Pisa, Italy, June 18-20, 2008, volume
5029 of Lecture Notes in Computer Science, pages
18–30, Berlin, 2008. Springer.

[9] I. H. Witten, A. Moffat, and T. C. Bell. Managing

Gigabytes. Van Nostrand Reinhold, New York, 1994.

[10] J. Ziv and A. Lempel. A universal algorithm for
sequential data compression. IEEE Transactions on

Information Theory, pages 337–343, 1977.


