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ABSTRACT
In this paper we prove a necessary and sufficient condi-
tion for a full binary invertible algebra to satisfy the ∀∃(∀)-
identity of mediality. A similar result is valid for full n-ary
invertible algebras satisfying the ∀∃(∀)-identity of n-ary me-
diality.
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1. INTRODUCTION
A general concept of the ∀∃(∀)-identity is given in [1,2,3]
(also see [4,5]). Let Q be a non empty set. The mapping
A : Q2 → Q is called a binary quasigroup operation if the
equations A(a, x) = b and A(y, a) = b have unique solutions
in the set Q for any a, b ∈ Q. Let LQ be a set of all the
binary quasigroup operations on the set Q. The algebra
(Q, LQ) is called a binary full invertible algebra. In paper
[6] (also see [7,8]) a necessary and sufficient condition is given
for a full binary invertible algebra, (Q, LQ), to satisfy the
∀∃(∀)-identity of associativity:

∀X, Y ∃X ′, Y ′∀x, y, z(X(Y (x, y), z) = X ′(x, Y ′(y, z)). (1)

In paper [9] the algebraic proof of this result is given. A
similar result for full ternary invertible algebras was proven
in [10], and also for full n-ary invertible algebras in [11] (also
see [12]). In paper [13] some stronger and more general
results were proven.

These results, as well as the original result of Schauffler, are
applicable in coding theory [14,15].

We need the following characterization of full binary invert-
ible algebras of small order.

Theorem 1. If the cardinality of the set Q is less than, or
equal to 3, then every quasigroup operation on the set Q is
linear.

To prove this result the concept of group holomorphism [16]
is necessary.

2. THE MAIN RESULT
Instead of equation (1), let us consider the following ∀∃(∀)-
identity of mediality:

∀X, Y, Z∃X ′, Y ′, Z′∀x, y, z, u(X(Y (x, y), Z(z, u)) =

X ′(Y ′(x, z), Z′(y, u)). (2)

Theorem 2. In order the ∀∃(∀)-identity of mediality (2)
to be held in a full binary invertible algebra (Q, LQ), it is
necessary and sufficient that the cardinality of the set Q is
less than, or equal to 3.

A similar result is valid for full n-ary invertible algebras
satisfying the ∀∃(∀)-identity of n-ary mediality.
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