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ABSTRACT
In this paper the clique covering and the stable set numbers
are investigated for the strong product of two generalized
cycles. Methods are given to construct a minimum clique
cover and a maximum stable set in case some conditions
hold. A lower bound is given for the stable set number of
the strong product of generalized cycles. The results here
generalize some facts known for odd cycles.

1. INTRODUCTION
The investigation of stable set number of product graphs
has come from the problem in information theory due to
Shannon [1, 2]. Ore in [3] raised the following problem:
Given a finite graph G, what are the necessary and sufficient
conditions on G in order that α(G×H) = α(G)×α(H), for
every finite graph H, where α(G) is the stable set number
of G.

For the equality above a sufficient condition is found by
Shannon [1]. Then Rosenfeld [4] proved its being not neces-
sary and gave a necessary and sufficient condition, thereby
introducing an invariant called ρ, the Rosenfeld number.

In [5], Hales obtained the non-multiplicative behavior of the
clique covering and stable set numbers on the strong prod-
uct of odd cycles. This work is closely related to it. The
strong product of two generalized cycles is investigated. The
following upper and lower bounds are known for the stable
set number and clique covering number of product graphs
[4, 5]:

α(G×H) ≤ min(ρ(G)× α(H), α(G)× ρ(H)),

σ(G×H) ≥ max(ρ(G)× σ(H), σ(G)× ρ(H)),

where ρ(G) is the Rosenfeld number of graph G. In case
some conditions hold, methods are given to construct max-
imum stable set and minimum clique cover in the product
of generalized cycles to achieve the bounds above.

2. PRELIMINARIES
A set of vertices of a graph is stable if no two vertices in
it are adjacent. A stable set containing k vertices is called
k-stable set. Let’s denote by α(G)-the number of vertices in
a maximum stable set of G. A set of vertices of a graph is
a clique if every two distinct vertices in it are adjacent and
if it’s maximal with respect to this property. A collection
C of cliques is a clique-cover of graph G if

⋃
Q∈C

Q = V (G),

where V (G) is the set of vertices of G. The clique-covering
number of G, σ(G), is the number of cliques in a minimum
clique-cover of G. A graph is called k-regular if the degree
of each vertex is k.

Generalized cycles are defined as follows:
Let’s denote by Ck

n the 2k-regular graph with n vertices
which can be ordered on a circle so that each vertex is ad-
jacent to the k vertices coming after and before it on the
circle (n > 2; 1 ≤ k ≤ [n−1

2
]).

For c ∈ R real number we shall use the following notations:
[c] - greatest integer less than or equal to c,
]c[ - least integer greater than or equal to c.

Also αmp = α(Cp
m), σmp = σ(Cp

m) and rmp = mmod(p + 1).

The strong product of G1 and G2 is a graph G with vertices
V (G) and edges E(G), where V (G) = V (G1) × V (G2) and
[(u1, u2), (v1, v2)] ∈ E(G) if and only if:

1. u1 = v1 and (u2, v2) ∈ E(G2), or

2. u2 = v2 and (u1, v1) ∈ E(G1), or

3. (u1, v1) ∈ E(G1) and (u2, v2) ∈ E(G2).

A non-negative real-valued function f on V (G) is called ad-
missible if for each clique C,

∑
v∈C

f(v) ≤ 1.

The Rosenfeld number ρ(G) of a graph G is defined as [4,
5]:
ρ(G) = max

f

∑
v∈V (G)

f(v), running over all f admissible func-

tions.

One can deduce that, ρ(Ck
n) = n/(k + 1), while α(Ck

n) =
[n/(k + 1)] and σ(Ck

n) =]n/(k + 1)[. The following inequali-
ties are known for each graphs G and H [4, 5]

α(G)×α(H) ≤ α(G×H) ≤ min(ρ(G)×α(H), α(G)×ρ(H)),

max(ρ(G)×σ(H), σ(G)×ρ(H)) ≤ σ(G×H) ≤ σ(G)×σ(H).

Hales [5] obtained the following results for the stable set and
clique covering numbers of strong product of two odd cycles
(2 ≤ k ≤ n):

α(C2n+1 × C2k+1) = [ρ(C2n+1)× α(C2k+1)],

σ(C2n+1 × C2k+1) =]ρ(C2n+1)× σ(C2k+1)[.



For the related results on the stable set number of products
of cycles refer to [6, 7, 8].

3. THE STABLE SET NUMBER OF THE
PRODUCT OF TWO GENERALIZED
CYCLES

It can be deduced from the inequalities above that for gen-
eralized cycles we have:

α(Cp
m×Ck

n) ≤ αmpαnk+min([rmpαnk/(p+1)], [rnkαmp/(k+1)]),

and

α(Cp
m × Ck

n) ≥ α(Cp
m)× α(Ck

n) = αmpαnk.

One can notice that if rmp = 0 or rnk = 0 then,

α(Cp
m × Ck

n) = α(Cp
m)× α(Ck

n).

The theorem below suggests a stronger lower bound:

Theorem 1. If αmprnk ≥ [αnk/(p + 1)](k + 1)rmp, then

α(Cp
m × Ck

n) ≥ αmpαnk + [αnk/(p + 1)]rmp.

Proof. To prove the theorem it’s enough to construct a
stable set in the product graph. We shall construct t =
αmp, αnk-stable sets S0, . . . , St−1 in Ck

n graph, then shall
decompose each of them into p + 1 parts. Afterwards by
constructing more rmp stable sets in Ck

n we shall have m
stable sets, P0, P1, . . . , Pm−1. Finally, we shall show that
the required stable set in the product graph is the following:

S =

m−1⋃
i=0

Bi, Bi = {(i, v)/v ∈ Pi}.

Let’s try to decompose αnk number into p + 1 almost equal
parts. It will be used to decompose Si sets. Let

v = αnkmod(p + 1), then

αnk = v]αnk/(p + 1)[+(p + 1− v)[αnk/(p + 1)].

Let’s define also ai numbers according to the equality above,

ai =]αnk/(p + 1)[, i = 0, . . . , v − 1;

ai = [αnk/(p + 1)], i = v, . . . , p.

Clearly in that case, αnk =
p∑

i=0

ai. Suppose l is the minimum

non-negative integer satisfying the inequality,

(l + 1)rnk ≥ [αnk/(p + 1)](k + 1)rmp,

according to the supposition of the theorem l < αmp. Con-
sider the following αnk-stable sets in Ck

n graph,

S0 = {0, (k + 1), 2(k + 1), . . . , (αnk − 1)(k + 1)},

S1 = {−rnk, (k + 1)− rnk, 2(k + 1)− rnk, . . . , (αnk − 1)(k +
1)− rnk},

S2 = {−2rnk, (k+1)−2rnk, 2(k+1)−2rnk, . . . , (αnk−1)(k+
1)− 2rnk},

. . .

Sl = {−lrnk, (k+1)− lrnk, 2(k+1)− lrnk, . . . , (αnk−1)(k+
1)− lrnk},

. . .

St−1 = {−lrnk, (k + 1) − lrnk, 2(k + 1) − lrnk, . . . , (αnk −
1)(k + 1)− lrnk},

R = {−(l + 1)rnk, (k + 1) − (l + 1)rnk, 2(k + 1) − (l +
1)rnk, . . . , (αnk − 1)(k + 1)− (l + 1)rnk}.

Operations here are considered to be done by modn. Con-
sider the elements of sets S0, . . . , St−1 in the specified order
and split each of them into p + 1 parts (so that i-th set
cardinality is ai). We shall get P0, P1, . . . , P(p+1)t−1 sets.
Now let’s consider the elements of R in the specified order
and separate from them the first rmp sets with cardinality
[αnk/(p + 1)]. We shall get P0, P1, . . . , Pm−1 stable sets in
Ck

n graph.

To finalize the proof of the theorem it remains to show that
the constructed set S is a stable set in the product graph. It
suffices to show that each sequential p+1 sets in the cyclic se-
quence of P0, P1, . . . , Pm−1 sets are pair-wise disjoint and the
union of the p+1 sets is a stable set in Ck

n. Consider any such
sequence of sets Pimod(n), P(i+1)mod(n), . . . , P(i+p)mod(n). If
P0 and Pm−1 aren’t present in the sequence at the same
time, then the statement is true according to the construc-
tion, otherwise the statement implies from the definition of
number l above.

Corollary 1. For every Cp
m and Ck

n generalized cycles holds,

α(Cp
m×Ck

n) ≥ αmpαnk+min([αnk/(p+1)]rmp, [αmp/(k+1)]rnk),

particularly,

α(Ck
n × Ck

n) ≥ α2
nk + [αnk/(k + 1)]rnk.

Proof. Clearly, it suffices to prove only the first inequal-
ity. If the condition of Theorem 1 is satisfied αmprnk ≥
[αnk/(p + 1)](k + 1)rmp, then the proof of corollary is im-
mediate, otherwise we have

αmprnk < [αnk/(p + 1)](k + 1)rmp,

hence

αnkrmp ≥ [αmp/(k + 1)](p + 1)rnk,

applying Theorem 1 we get

α(Cp
m × Ck

n) ≥ αmpαnk + [αmp/(k + 1)]rnk ≥ αmpαnk +
min([αnk/(p + 1)]rmp, [αmp/(k + 1)]rnk)

and the corollary is proved.

Corollary 2. Consider the graph Ck
n and the cycle C2h+1.

If rnkh ≥ [αnk/2](k + 1), then

α(C2h+1 × Ck
n) = α(C2h+1)× αnk + [αnk/2] = [ρ(C2h+1)×

αnk].

Proof. If we take into account that C2h+1 = Cp
m for m =

2h + 1 and p = 1, then we can apply Theorem 1:

α(Cp
m × Ck

n) ≥ αmpαnk + [αnk/2],

but from the other side we have:



α(Cp
m × Ck

n) ≤ [ρ(Cp
m)× α(Ck

n)] = αmpαnk + [αnk/2],

therefore the corollary is proved.

4. THE CLIQUE COVERING NUMBER OF
THE PRODUCT OF TWO GENERALIZED
CYCLES

Theorem 2. Let Cp
m and Ck

n be generalized cycles. If the
following conditions hold:

1)p + 1 ≥ 2rmp, rmp 6= 0, rnk 6= 0,

2)(σ(Cp
m)− 1)(k + 1− rnk) ≤ [σ(Ck

n)/2](k + 1), then

σ(Cp
m × Ck

n) =]σ(Cp
m)× ρ(Ck

n)[= σ(Cp
m)× σ(Ck

n)− (1)

[σ(Cp
m)

k + 1− rnk

k + 1
].

Proof. Since the right hand is a lower bound for σ it’s
enough to construct a clique cover to attain that bound.
Let’s denote the vertices of Cp

m and Ck
n by numbers 0, 1, ..., m−

1 and 0, 1, ..., n − 1 correspondingly. Then for the vertex
(x, y) ∈ V (Cp

m × Ck
n) let

Q(x, y) = {(x + i, y + j) : i = 0, ..., p; j = 0, ..., k}

be a clique in the product graph Cp
m × Ck

n (x + i and y + j
are taken by modulo m and n respectively). Let’s denote
t = [σ(Ck

n)/2].

Consider the following families of cliques

Q0
0 = {Q(0, (k + 1)i) : i = 0, ..., t− 1},

Q1
0 = {Q(rmp, (k + 1)i) : i = t, ..., σnk − 1},

Q0
1 = {Q(p + 1, k + 1− rnk + (k + 1)i) : i = 0, ..., t− 1},

Q1
1 = {Q(p+1+rmp, k+1−rnk+(k+1)i) : i = t, ..., σnk−1},

...

Q0
σmp−2 = {Q((p+1)(σmp−2), (k+1−rnk)(σmp−2)+(k+

1)i) : i = 0, ..., t− 1},

Q1
σmp−2 = {Q((p + 1)(σmp − 2) + rmp, (k + 1− rnk)(σmp −

2) + (k + 1)i) : i = t, ..., σnk − 1},

Qσmp−1 = {Q((p+1)(σmp−1), (k+1−rnk)(σmp−1)+(k+

1)i) : i = 0, ..., σnk − [σmp
k+1−rnk

k+1
]− 1}.

We will show that the union of those families above is a
clique cover for the product graph. Obviously its cardinal
number is equal to the right hand of the equality (1). Let
(x, y) ∈ V (Cp

m×Ck
n), then the following 3 cases are possible

1)rmp ≤ x ≤ m− rmp − 1 = (σmp − 1)(p + 1)− 1.
Then x = s(p + 1) + c, 0 ≤ s ≤ σmp − 2, 0 ≤ c ≤ p. If s = 0,
then rmp ≤ c ≤ p and clearly (x, y) ∈ Q0

0 ∪ Q1
0, otherwise

(x, y) ∈ Q1
s−1 ∪Q0

s ∪Q1
s.

2)m− rmp ≤ x ≤ m.
Then x = s(p + 1) + c, s = σmp − 1, 0 ≤ c ≤ rmp − 1. If
0 ≤ y ≤ (k + 1 − rnk)(σmp − 1) − 1, then (x, y) ∈ Q1

σmp−2,
otherwise we have

(k + 1− rnk)(σmp − 1) + (k + 1)(σnk − [σmp
k + 1− rnk

k + 1
]) ≥ (2)

≥ (k + 1)σnk + (k + 1− rnk)(σmp − 1)− σmp(k + 1− rnk) ≥
≥ (k + 1)σnk − (k + 1− rnk) ≥ n,

therefore (x, y) ∈ Qσmp−1.

3)0 ≤ x ≤ rmp − 1.
In this case if 0 ≤ y ≤ t(k+1)−1, then (x, y) ∈ Q0

0, otherwise
we have the conditions of the theorem and the inequality
(2). According to the 1st condition of the theorem, Qσmp−1

covers a part of vertices with first coordinate up to rmp −
1(and more if p+1 is strictly greater than 2rmp). According
to the 2nd condition of the theorem and inequality (2), there
are no uncovered vertices with second coordinate t(k +1) ≤
y ≤ n− 1(0 ≤ x ≤ rmp − 1), hence (x, y) ∈ Qσmp−1.

Therefore the union of the mentioned families is a clique
cover of the product graph with required cardinality.

Corollary 3. Let Cp
m and Ck

n be generalized cycles. If p+
1 = 2rmp and k + 1 = 2rnk, then

σ(Cp
m × Ck

n) = max(]σ(Cp
m)× ρ(Ck

n)[, ]σ(Ck
n)× ρ(Cp

m)[).

Proof. The right hand of the suggested equality is a lower
bound for σ(Cp

m × Ck
n). If the 2nd condition of Theorem 2

holds then the proof is immediate, otherwise we have

(σ(Cp
m)−1)(k+1−rnk) > [σ(Ck

n)/2](k+1) and since k+1 =
2rnk we get

σ(Cp
m)/2 > [σ(Ck

n)/2] + 1/2 ≥ σ(Ck
n)/2,

[σ(Cp
m)/2] ≥ σ(Ck

n)−1

2
.

The latter is the second condition of Theorem 2 and with
k + 1 = 2rnk equality it implies that

σ(Cp
m × Ck

n) =]σ(Ck
n)× ρ(Cp

m)[≤
max(]σ(Cp

m)× ρ(Ck
n)[, ]σ(Ck

n)× ρ(Cp
m)[),

hence

σ(Cp
m × Ck

n) = max(]σ(Cp
m)× ρ(Ck

n)[, ]σ(Ck
n)× ρ(Cp

m)[).
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