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ABSTRACT 
This paper discusses the problem of finding the length of the 
longest increasing subsequence (LIS) of sequence of elements 
drawn from an arbitrary partially ordered domain. An online 
algorithm by Friedman is known [1] to find the length of LIS 
of sequence of integers. Here it is shown, that the approaches 
of that algorithm can be applied for a more general case, when 
the sequence consists of elements of an arbitrary partially 
ordered domain. The resulting generalized algorithm has 
analogous characteristics and coincides with Friedman’s 
algorithm in the case of integer domain. Also, some statistical 
information is provided, which describes the work of that 
generalized algorithm for the case when the input sequence 
consists of elements of Boolean cube. 
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1. INTRODUCTION 
This paper discusses the problem of designing an online 
algorithm which finds the length of LIS of sequence of 
elements drawn from an arbitrary partially ordered domain. 
The necessity to discuss such problem partially relates with 
some tasks of data mining which consider not only 
quantitative but also qualitative properties of objects [2]. 
 We will say that a sequence is defined on some 
domain, if it consists of elements of that domain. An 
algorithm is described at [1] (known as Friedman’s algorithm 
[3]), which as an input receives any sequence of integers, 
sequentially handles elements of that sequence and outputs 
the length of LIS of that sequence. For an input sequence, 
which is defined on domain ሼ0, ڮ , ݉ െ 1ሽ and which has LIS 
of length ݈, that algorithm uses ܱሺ݈ · log ݉ሻ bits of memory 
and when handling next element, performs ܱሺlog ݈ሻ 
operations. An integer domain is a partially ordered domain, 
where every two elements are comparable. In this paper it is 
shown, that the approaches of Friedman’s algorithm can be 
applied for the case, when the input sequence is defined on an 
arbitrary partially ordered domain. For an input sequence, 
which is defined on some partially ordered domain ࣞ and 
which has LIS of length ݈, the resulting generalized algorithm 
uses ܱ൫݈ · widthሺࣞሻ · codeሺࣞሻ൯ bits of memory and when 
handling next element, performs ܱ൫log ݈ · widthሺࣞሻ ·
complexityሺࣞሻ൯ operations, where widthሺࣞሻ is the maximal 
number of pairwise incomparable elements in ࣞ, codeሺࣞሻ is 
the sufficient amount of memory to represent any element of 
ࣞ, complexityሺࣞሻ is the sufficient amount of operations to 
find out comparability and order between any two elements of 
ࣞ. Further the problem statement is formally described. 

 Let ܺ ൌ ሺݔଵ, ڮ ,  ሻ be a sequence defined on someݔ
partially ordered domain ࣞ ൌ ሺܦ,  ,is some finite set ܦ .ሻ (i.eع
 ܦ is a reflexive, antisymmetric and transitive relation on ع
and ݔ א ݅ for ܦ ൌ 1, ڮ , ݊). A subsequence ݔభ, ڮ ,  ݔ
(1  ݅ଵ ൏ ڮ ൏ ݅  ݊) of ܺ is said to be increasing, if 
భݔ ع ڮ ع  ܺ . Among all the increasing subsequences ofݔ
there are some with maximal length: that length is called the 
length of LIS of ܺ and is denoted by lisሺܺሻ. It is obvious, that 
1  lisሺܺሻ  ݊. We will say that an online algorithm finds 
the length of LIS of sequence ܺ defined on some partially 
ordered domain ࣞ, if it sequentially handles elements of ܺ 
and outputs lisሺܺሻ as its result. For further presentation some 
basic information about partially ordered sets is necessary (it 
can be found e.g. at [4]). Here it is shortly presented. 
 Let ࣞ ൌ ሺܦ,  .ሻ be some partially ordered setع
Elements ݔ, ݕ א ݔ are said to be comparable, if ܦ ع  or ݕ
ݕ ع ݔ Otherwise, or if .ݔ ൌ  are said to be ݕ and ݔ ,ݕ
incomparable. A subset of ܦ, every two element of which are 
comparable (incomparable), is said to be a chain (antichain) 
of ࣞ. An element ݔ א  is said to be minimal (maximal), if ܦ
there is no element ݕ א ݕ such that ܦ ع ݔ) ݔ ع  except of ,(ݕ
 As will be readily observed, the set of minimal (maximal) .ݔ
elements of ࣞ is an antichain. Among all the antichains of ࣞ 
there are some with maximal number of elements: that 
number is called the width of ࣞ and is denoted by widthሺࣞሻ. 
 If widthሺࣞሻ ൌ 1, then every two elements of ܦ are 
comparable and ܦ is a chain. In this case, without loss of 
generality, we can assume that ܦ ൌ ሼ0, ڮ , ݉ െ 1ሽ for some 
integer ݉, and that the relation ع represents the natural order 
between integers. Exactly because of this, the problem of 
finding the length of LIS of sequence of integers is a special 
case of the problem of finding the length of LIS of sequence 
defined on partially ordered domain. When widthሺࣞሻ ൌ 1, 
the generalization of Friedman’s algorithm, mentioned above, 
coincides with Friedman’s algorithm. 
 The problem of finding the length of LIS of 
sequence defined on partially ordered domain should not be 
confused with the problem of finding the length of maximal 
chain of partially ordered set. The last one can be solved by 
the so called “layering method” [5]. By some intermediate 
inferences the first problem can be reduced to the second, i.e. 
one can propose an online algorithm based on layering 
method, which finds the length of LIS of sequence defined on 
partially ordered set (point 2), but the generalization of 
Friedman’s algorithm is more effective (point 3). 
 
2. AN ONLINE ALGORITHM BASED ON 
LAYERING METHOD 
Let ܺ ൌ ሺݔଵ, ڮ ,  ሻ be a sequence defined on some partiallyݔ
ordered domain ࣞ ൌ ሺܦ, ݇ ሻ. Forع ൌ 1, ڮ , ݊ let ܺ ൌ



ሺݔଵ, ڮ ,  ሻ. Let us define a relation ՚ bound with ܺ, asݔ
following: 
 ݅ ՚ ݆ if ݅  ݆ and ݔ ع ,݅  forݔ ݆ א ሼ1, ڮ , ݇ሽ. (1) 
As will readily be observed, relation ՚ defines a partial order 
on set ሼ1, ڮ , ݇ሽ. Let ࣲ ൌ ሺሼ1, ڮ , ݇ሽ, ՚ሻ and ࣲ ൌ ࣲ. It can 
be checked, that widthሺࣲሻ  widthሺࣞሻ. Let ሼ݅ଵ, ڮ , ݅ሽ be a 
chain of ࣲ. Without loss of generality we can assume that 
݅ଵ ՚ ڮ ՚ ݅. Note, that in this case ݔభ, ڮ ,   is an increasingݔ
subsequence of ܺ. The converse proposition is also true i.e. 
if ݔభ, ڮ ,   is an increasing subsequence of ܺ, thenݔ
ሼ݅ଵ, ڮ , ݅ሽ is a chain of ࣲ and ݅ଵ ՚ ڮ ՚ ݅. Thus the 
problem of finding the length of LIS of sequence ܺ reduced 
to the problem of finding the length of maximal chain of ࣲ. 
As it had been mentioned above, the last problem can be 
solved by layering method (described e.g. at [5]). Further that 
method is shortly described and it is shown how using that 
method one can design an online algorithm which finds the 
length of LIS of sequence defined on partially ordered 
domain. 
 For ݇ ൌ 1, ڮ , ݊ let ܲ ൌ ሼ1, ڮ , ݇ሽ and for ݅ ൌ
1, ڮ , ݇  1 let ܲ

ାଵ ൌ ܲ
 ך ܳ

 , where ܲ
ଵ ൌ ܲ and ܳ

  is the 
set of all minimal elements of partially ordered set ൫ ܲ

 , ՚൯ (as 
it had been mentioned before, ܳ

  is an antichain of ൫ ܲ
 , ՚൯). 

Let ݈ denote the largest integer such that ܲ
ೖ ്  it is clear) 

that such integer exists). As will readily be observed, the 
length of maximal chain of ሺ ܲ, ՚ሻ (i.e. of ࣲ) is ݈. Note, 
that ܲ ൌ ڂ ܳ

ೖ
ୀଵ , moreover, if ݅ ് ݆ then ܳ

 ת ܳ
 ൌ  see) 

picture 1). The layering method consists in sequentially 
constructing antichains ܳ

ଵ, ڮ , ܳ
ೖ . These antichains are 

called layers of ࣲ and the sequence ܳ
ଵ, ڮ , ܳ

ೖ is called 
layering of ࣲ. Thus it is clear that to design an online 
algorithm which finds the length of LIS of sequence defined 
on partially ordered domain, it is sufficient to design an 
algorithm which constructs the layering of ࣲାଵ based on the 
layering of ࣲ. Such algorithm is quite trivial. Note, that 
݇  1 is a maximal element in ࣲାଵ and if it succeeds (in 
terms of partial order ՚) some element in ܳ

ೖ , then the 
following 
 ܳ

ଵ, ڮ , ܳ
ೖ, ሼ݇  1ሽ (2) 

is the layering of ࣲାଵ. Otherwise, if ݆ denotes the largest 
integer, such that ݇  1 is incomparable (in terms of partial 
order ՚) with all elements of ܳ

ೖ , then the following 
 ܳ

ଵ, ڮ , ܳ
ೖ  ሼ݇  1ሽ, ڮ , ܳ

ೖ (3) 
is the layering of ࣲାଵ. Thus the algorithm which constructs 
the layering of ࣲାଵ based on layering of ࣲ is obvious (see 
picture 1). As it had been mentioned before, based on this 
algorithm one can design an online algorithm which finds the 
length of LIS of sequence defined on partially ordered 

domain. As will readily be observed, that online algorithm 
will use ܱ൫݊ · ሺcodeሺࣞሻ  log ݊ሻ൯ bits of memory and when 
handling next element, will perform ܱ൫log ݈ · widthሺࣞሻ ·
complexityሺࣞሻ൯ operations, where ࣞ is the partially ordered 
domain on which the input sequence is defined, ݊ is the length 
of that sequence, ݈ is the length of LIS of that sequence, 
widthሺࣞሻ is the width of ࣞ, codeሺࣞሻ is the sufficient amount 
of memory to represent any element of ࣞ, complexityሺࣞሻ is 
the sufficient amount of operations to find out the order 
between any two elements of ࣞ. 
 
3. THE GENERALIZATION OF 
FRIEDMAN’S ALGORITM 
As it had been mentioned before, at [1] there is described an 
online algorithm (Friedman’s algorithm) which finds the 
length of LIS of sequence of integers. Further that algorithm 
is shortly described and it is shown how to generalize that 
algorithm for the case when the input sequence consists of 
elements of partially ordered domain. 
 Let ܺ ൌ ሺݔଵ, ڮ ,  ሻ be a sequence defined onݔ
domain ሼ0, ڮ , ݉ െ 1ሽ. For ݇ ൌ 1, ڮ , ݊ let ܺ ൌ ሺݔଵ, ڮ ,  ሻݔ
and let ݈ denote the length of LIS of ܺ. For ݇ ൌ 1, ڮ , ݊ and 
݅ ൌ 1, ڮ , ݈ let ݉

  denote the minimal element among last 
elements of all increasing subsequences of ܺ with length ݅. 
Note, that 
 ݉

ଵ  ڮ  ݉
ೖ, (4) 

because the last element of each increasing subsequence with 
length ݅  1 is also the last element of an increasing 
subsequence with length ݅. We will call sequence ݉

ଵ, ڮ , ݉
ೖ 

the characteristic sequence of ܺ. To find the length of LIS of 
sequence ܺ, Friedman’s algorithm sequentially handles 
elements of ܺ and while handling ሺ݇  1ሻ-th element of ܺ, 
constructs the characteristic sequence of ܺାଵ, based on 
characteristic sequence of ܺ. It is clear that the length of 
characteristic sequence of ܺ (i.e. of ܺ) is the length of LIS of 
ܺ. Note, that if ݉

ೖ   ାଵ, then the characteristic sequenceݔ
of ܺାଵ is the following 
 ݉

ଵ, ڮ , ݉
ೖ,  ାଵ, (5)ݔ

and otherwise, if ݆ denotes the lowest integer, such that 
ାଵݔ ൏ ݉

ೖ , then the characteristic sequence of ܺାଵ is the 
following 
 ݉

ଵ, ڮ , ݉
ೖିଵ, ,ାଵݔ ݉

ೖାଵ, ڮ , ݉
ೖ. (6) 

Thus while handling ሺ݇  1ሻ-th element of ܺ, Friedman’s 
algorithm constructs the characteristic sequence of ܺାଵ, 
based on (5) and (6). It is easy to check, that in such case 
Freidman’s algorithm will use ܱሺ݈ · log ݉ሻ bits of memory 
and when handling next element, will perform ܱሺlog ݈ሻ 
operations, where the input sequence is defined on domain 
ሼ0, ڮ , ݉ െ 1ሽ and ݈ is the length of LIS of that sequence. 
 For now, let us generalize Friedman’s algorithm for 
the case when the input sequence is defined on partially 
ordered domain. Let ܺ ൌ ሺݔଵ, ڮ ,  ሻ be a sequence definedݔ
on some partially ordered domain ࣞ ൌ ሺܦ,  ሻ. As before, letع
ܺ ൌ ሺݔଵ, ڮ ,  .ሻ and let ݈ denote the length of LIS of ܺݔ
For ݇ ൌ 1, ڮ , ݊ and ݅ ൌ 1, ڮ , ݈ let ܮ

  denote the set of last 
elements of all increasing subsequences of ܺ with length ݅. 
Let ܯ

  denote the set of all minimal elements of partially 
ordered set ൫ܮ

 , ܮ ,൯. In the case of sequence of integersع
  

consists of integers and there is one minimal element of ܮ
  

(upper that element is denoted by ݉
 ). In analogy with the 

case of sequence of integers, we will call the sequence 
ܯ

ଵ, ڮ , ܯ
ೖ the characteristic sequence of ܺ. Current 

generalization of Friedman’s algorithm consists in designing 

 ڮ
 ڮ

݇  1 

ܳ
ೖ ܳ

ଵ ܳ
ೖିଵ ܳ

ೖ  

ܳାଵ
ೖ  

ࣲ ൌ ሺ ܲ
ଵ, ՚ሻ 

 
ቀ ܲ

ೖ , ՚ቁ 

ቀ ܲାଵ
ೖ , ՚ቁ 

ࣲାଵ ൌ ሺ ܲାଵ
ଵ , ՚ሻ 

 ڭ

picture 1 



an algorithm which constructs ܯାଵ
ଵ , ڮ , ାଵܯ

ೖశభ  based on 
ܯ

ଵ, ڮ , ܯ
ೖ. 

 Observe now, that if ݖ א ܮ
ାଵ, i.e. if ݖ is the last 

element of some increasing subsequence of ܺ with length 
݅  1, then by removing the first element of that sequence we 
will get an increasing subsequence of ܺ with length ݅. This 
means that 
ܮ 

ଵ ل ڮ ل ܮ
ೖ . (7) 

Let us remember, that ܯ
  denotes the set of minimal elements 

of ൫ܮ
 , ܯ ൯. It is clear, thatع

  is an antichain of ࣞ. Let us 
define a relation on set of all antichains of ࣞ and denote it by 
 of ࣞ we ܤ and ܣ in the following way. For any antichains ,ع
will consider ܣ ع  there is an ܤ if for any element of ,ܤ
element of ܣ to which it succeeds, i.e. 
ܣ  ع ܾ if ܤ א ܽ ܤ א ሺܽ ܣ ع ܾሻ. (8) 
As will readily be observed, (8) defines a partial order on the 
set of all antichains of ࣞ. Also it is easy to check that (7) 
directly implies the following: 
ܯ 

ଵ ع ڮ ع ܯ
ೖ. (9) 

Observe now, that if ܯ
ೖ ع ሼݔାଵሽ (here symbol ع denotes 

the relation defined by (8)), then the characteristic sequence of 
ܺାଵ is the following 
ܯ 

ଵ, ڮ , ܯ
ೖ, ሼݔାଵሽ, (10) 

because in this case ݔାଵ is the last element of any increasing 
subsequence of ܺାଵ with length ݈  1. Otherwise, if ݆ 
denotes the lowest integer, such that ܯ

ೖ ڟ ሼݔାଵሽ, then the 
characteristic sequence of ܺାଵ is the following 

ܯ
ଵ, ڮ , ܯ

ೖିଵ, minቀܯ
ೖ  ሼݔାଵሽቁ , ܯ

ೖାଵ, ڮ , ܯ
ೖ, (11) 

where minቀܯ
ೖ  ሼݔାଵሽቁ denotes the set of minimal  (in 

terms of partially ordered set ࣞ) elements among elements in 
ܯ

ೖ  ሼݔାଵሽ (see picture 2). To make sure in this, we will 

prove following four claims. Let us remember, that ܮ
  

denotes the set of last elements of all increasing subsequences 
of ܺ with length ݅, ܯ

  is the set of minimal elements among 
them and ݆ denotes the lowest integer, such that ܯ

ೖ ڟ
ሼݔାଵሽ. 
Claim 1. If ܯ

ೖ ڟ ሼݔାଵሽ then ݈ାଵ ൌ ݈. ז 
Claim 2. ܯାଵ

 ൌ ܯ
  for ݅ ൌ 1, ڮ , ݆ െ 1. 

Proof. In this case ܯ
 ع ሼݔାଵሽ and ܮାଵ

 ൌ ܮ
  ሼݔାଵሽ so 

ାଵܯ
 ൌ ܯ

  ז .
Claim 3. ܯାଵ

 ൌ ܯ
  for ݅ ൌ ݆  1, ڮ , ݈. 

Proof. In this case ܮାଵ
 ൌ ܮ

  so ܯାଵ
 ൌ ܯ

  ז .
Claim 4. ܯାଵ

ೖ ൌ minቀܯ
ೖ  ሼݔାଵሽቁ. 

Proof. In this case ܯ
ೖ ڟ ሼݔାଵሽ and ܮାଵ

ೖ ൌ ܮ
ೖ  ሼݔାଵሽ so 

ାଵܯ
ೖ ൌ minቀܯ

ೖ  ሼݔାଵሽቁ. ז 
Thus, while handling ሺ݇  1ሻ-th element of ܺ, the current 
generalization of Friedman’s algorithm constructs the 
characteristic sequence of ܺାଵ, based on (10) and (11). As 
will readily be observed, that algorithm can be designed such, 

that it will use ܱ൫݈ · widthሺࣞሻ · codeሺࣞሻ൯ bits of memory 
and when handling next element, will perform ܱ൫log ݈ ·
widthሺࣞሻ · complexityሺࣞሻ൯ operations, where ࣞ is the 
partially ordered domain on which the input sequence is 
defined, ݈ is the length of LIS of that sequence, widthሺࣞሻ is 
the width of ࣞ, codeሺࣞሻ is the sufficient amount of memory 
to represent any element of ࣞ, complexityሺࣞሻ is the 
sufficient amount of operations to find out the order between 
any two elements of ࣞ. 
 The factor widthሺࣞሻ in the estimation for memory 
usage ܱ൫݈ · widthሺࣞሻ · codeሺࣞሻ൯ is quite coarse, because the 
number of elements in antichains ܯ

  (݇ ൌ 1, ڮ , ݊ and 
݅ ൌ 1, ڮ , ݈) is considerably less then widthሺࣞሻ. Statistical 
information provided at the next point reflects this fact. 
 
4. SOME STATISTICAL INFORMATION 
At this point some statistical information is provided which 
describes the work of above mentioned Friedman’s 
generalized algorithm for the case when elements of input 
sequence are elements of Boolean cube. Graphic 1 expresses 

the dependency of ratio of the average number of elements in 
antichains, which consist the characteristic sequence and the 
width of the partially ordered domain (in this case, 16 
dimensional Boolean cube) on which the input sequence is 
defined. As graphic 1 shows, in average this ratio decreases 
when the length of the input sequence increases. For this case 
in practice it uses about 16 times less amount of memory then 
݈ · widthሺࣞሻ · codeሺࣞሻ is. 
 
5. CONCLUSION 
Roughly speaking, characteristics of the generalized algorithm 
are the same as characteristics of the original algorithm but 
the factor of widthሺࣞሻ (see the table bellow). 

 memory time 
Original ܱሺ݈ · log ݉ሻ ܱሺlog ݈ሻ

Generalized ܱ൫݈ · widthሺࣞሻ
· codeሺࣞሻ൯ 

ܱ൫log ݈ · widthሺࣞሻ
· complexityሺࣞሻ൯ 

For integer domain (i.e. when widthሺࣞሻ ൌ 1), we have 
codeሺࣞሻ ൌ log ݉ and complexityሺࣞሻ ൌ 1. 
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