

On the length of the longest increasing subsequence of
sequence of elements drawn from an arbitrary partially

ordered domain

Vahagn, Minasyan

Yerevan State University
Yerevan, Armenia

e-mail: vahagn.minasyan@gmail.com

ABSTRACT
This paper discusses the problem of finding the length of the
longest increasing subsequence (LIS) of sequence of elements
drawn from an arbitrary partially ordered domain. An online
algorithm by Friedman is known [1] to find the length of LIS
of sequence of integers. Here it is shown, that the approaches
of that algorithm can be applied for a more general case, when
the sequence consists of elements of an arbitrary partially
ordered domain. The resulting generalized algorithm has
analogous characteristics and coincides with Friedman’s
algorithm in the case of integer domain. Also, some statistical
information is provided, which describes the work of that
generalized algorithm for the case when the input sequence
consists of elements of Boolean cube.

Keywords
Online algorithm, partially ordered set, longest increasing
subsequence.

1. INTRODUCTION
This paper discusses the problem of designing an online
algorithm which finds the length of LIS of sequence of
elements drawn from an arbitrary partially ordered domain.
The necessity to discuss such problem partially relates with
some tasks of data mining which consider not only
quantitative but also qualitative properties of objects [2].
 We will say that a sequence is defined on some
domain, if it consists of elements of that domain. An
algorithm is described at [1] (known as Friedman’s algorithm
[3]), which as an input receives any sequence of integers,
sequentially handles elements of that sequence and outputs
the length of LIS of that sequence. For an input sequence,
which is defined on domain ሼ0, ڮ , ݉ െ 1ሽ and which has LIS
of length ݈, that algorithm uses ܱሺ݈ · log ݉ሻ bits of memory
and when handling next element, performs ܱሺlog ݈ሻ
operations. An integer domain is a partially ordered domain,
where every two elements are comparable. In this paper it is
shown, that the approaches of Friedman’s algorithm can be
applied for the case, when the input sequence is defined on an
arbitrary partially ordered domain. For an input sequence,
which is defined on some partially ordered domain ࣞ and
which has LIS of length ݈, the resulting generalized algorithm
uses ܱ൫݈ · widthሺࣞሻ · codeሺࣞሻ൯ bits of memory and when
handling next element, performs ܱ൫log ݈ · widthሺࣞሻ ·
complexityሺࣞሻ൯ operations, where widthሺࣞሻ is the maximal
number of pairwise incomparable elements in ࣞ, codeሺࣞሻ is
the sufficient amount of memory to represent any element of
ࣞ, complexityሺࣞሻ is the sufficient amount of operations to
find out comparability and order between any two elements of
ࣞ. Further the problem statement is formally described.

 Let ܺ ൌ ሺݔଵ, ڮ , ሻ be a sequence defined on someݔ
partially ordered domain ࣞ ൌ ሺܦ, ,is some finite set ܦ .ሻ (i.eع
 ܦ is a reflexive, antisymmetric and transitive relation on ع
and ݔ א ݅ for ܦ ൌ 1, ڮ , ݊). A subsequence ݔభ, ڮ , ݔ
(1 ݅ଵ ൏ ڮ ൏ ݅ ݊) of ܺ is said to be increasing, if
భݔ ع ڮ ع ܺ . Among all the increasing subsequences ofݔ
there are some with maximal length: that length is called the
length of LIS of ܺ and is denoted by lisሺܺሻ. It is obvious, that
1 lisሺܺሻ ݊. We will say that an online algorithm finds
the length of LIS of sequence ܺ defined on some partially
ordered domain ࣞ, if it sequentially handles elements of ܺ
and outputs lisሺܺሻ as its result. For further presentation some
basic information about partially ordered sets is necessary (it
can be found e.g. at [4]). Here it is shortly presented.
 Let ࣞ ൌ ሺܦ, .ሻ be some partially ordered setع
Elements ݔ, ݕ א ݔ are said to be comparable, if ܦ ع or ݕ
ݕ ع ݔ Otherwise, or if .ݔ ൌ are said to be ݕ and ݔ ,ݕ
incomparable. A subset of ܦ, every two element of which are
comparable (incomparable), is said to be a chain (antichain)
of ࣞ. An element ݔ א is said to be minimal (maximal), if ܦ
there is no element ݕ א ݕ such that ܦ ع ݔ) ݔ ع except of ,(ݕ
 As will be readily observed, the set of minimal (maximal) .ݔ
elements of ࣞ is an antichain. Among all the antichains of ࣞ
there are some with maximal number of elements: that
number is called the width of ࣞ and is denoted by widthሺࣞሻ.
 If widthሺࣞሻ ൌ 1, then every two elements of ܦ are
comparable and ܦ is a chain. In this case, without loss of
generality, we can assume that ܦ ൌ ሼ0, ڮ , ݉ െ 1ሽ for some
integer ݉, and that the relation ع represents the natural order
between integers. Exactly because of this, the problem of
finding the length of LIS of sequence of integers is a special
case of the problem of finding the length of LIS of sequence
defined on partially ordered domain. When widthሺࣞሻ ൌ 1,
the generalization of Friedman’s algorithm, mentioned above,
coincides with Friedman’s algorithm.
 The problem of finding the length of LIS of
sequence defined on partially ordered domain should not be
confused with the problem of finding the length of maximal
chain of partially ordered set. The last one can be solved by
the so called “layering method” [5]. By some intermediate
inferences the first problem can be reduced to the second, i.e.
one can propose an online algorithm based on layering
method, which finds the length of LIS of sequence defined on
partially ordered set (point 2), but the generalization of
Friedman’s algorithm is more effective (point 3).

2. AN ONLINE ALGORITHM BASED ON
LAYERING METHOD
Let ܺ ൌ ሺݔଵ, ڮ , ሻ be a sequence defined on some partiallyݔ
ordered domain ࣞ ൌ ሺܦ, ݇ ሻ. Forع ൌ 1, ڮ , ݊ let ܺ ൌ

ሺݔଵ, ڮ , ሻ. Let us define a relation ՚ bound with ܺ, asݔ
following:
 ݅ ՚ ݆ if ݅ ݆ and ݔ ع ,݅ forݔ ݆ א ሼ1, ڮ , ݇ሽ. (1)
As will readily be observed, relation ՚ defines a partial order
on set ሼ1, ڮ , ݇ሽ. Let ࣲ ൌ ሺሼ1, ڮ , ݇ሽ, ՚ሻ and ࣲ ൌ ࣲ. It can
be checked, that widthሺࣲሻ widthሺࣞሻ. Let ሼ݅ଵ, ڮ , ݅ሽ be a
chain of ࣲ. Without loss of generality we can assume that
݅ଵ ՚ ڮ ՚ ݅. Note, that in this case ݔభ, ڮ , is an increasingݔ
subsequence of ܺ. The converse proposition is also true i.e.
if ݔభ, ڮ , is an increasing subsequence of ܺ, thenݔ
ሼ݅ଵ, ڮ , ݅ሽ is a chain of ࣲ and ݅ଵ ՚ ڮ ՚ ݅. Thus the
problem of finding the length of LIS of sequence ܺ reduced
to the problem of finding the length of maximal chain of ࣲ.
As it had been mentioned above, the last problem can be
solved by layering method (described e.g. at [5]). Further that
method is shortly described and it is shown how using that
method one can design an online algorithm which finds the
length of LIS of sequence defined on partially ordered
domain.
 For ݇ ൌ 1, ڮ , ݊ let ܲ ൌ ሼ1, ڮ , ݇ሽ and for ݅ ൌ
1, ڮ , ݇ 1 let ܲ

ାଵ ൌ ܲ
 ך ܳ

 , where ܲ
ଵ ൌ ܲ and ܳ

 is the
set of all minimal elements of partially ordered set ൫ ܲ

 , ՚൯ (as
it had been mentioned before, ܳ

 is an antichain of ൫ ܲ
 , ՚൯).

Let ݈ denote the largest integer such that ܲ
ೖ ് it is clear)

that such integer exists). As will readily be observed, the
length of maximal chain of ሺ ܲ, ՚ሻ (i.e. of ࣲ) is ݈. Note,
that ܲ ൌ ڂ ܳ

ೖ
ୀଵ , moreover, if ݅ ് ݆ then ܳ

 ת ܳ
 ൌ see)

picture 1). The layering method consists in sequentially
constructing antichains ܳ

ଵ, ڮ , ܳ
ೖ . These antichains are

called layers of ࣲ and the sequence ܳ
ଵ, ڮ , ܳ

ೖ is called
layering of ࣲ. Thus it is clear that to design an online
algorithm which finds the length of LIS of sequence defined
on partially ordered domain, it is sufficient to design an
algorithm which constructs the layering of ࣲାଵ based on the
layering of ࣲ. Such algorithm is quite trivial. Note, that
݇ 1 is a maximal element in ࣲାଵ and if it succeeds (in
terms of partial order ՚) some element in ܳ

ೖ , then the
following
 ܳ

ଵ, ڮ , ܳ
ೖ, ሼ݇ 1ሽ (2)

is the layering of ࣲାଵ. Otherwise, if ݆ denotes the largest
integer, such that ݇ 1 is incomparable (in terms of partial
order ՚) with all elements of ܳ

ೖ , then the following
 ܳ

ଵ, ڮ , ܳ
ೖ ሼ݇ 1ሽ, ڮ , ܳ

ೖ (3)
is the layering of ࣲାଵ. Thus the algorithm which constructs
the layering of ࣲାଵ based on layering of ࣲ is obvious (see
picture 1). As it had been mentioned before, based on this
algorithm one can design an online algorithm which finds the
length of LIS of sequence defined on partially ordered

domain. As will readily be observed, that online algorithm
will use ܱ൫݊ · ሺcodeሺࣞሻ log ݊ሻ൯ bits of memory and when
handling next element, will perform ܱ൫log ݈ · widthሺࣞሻ ·
complexityሺࣞሻ൯ operations, where ࣞ is the partially ordered
domain on which the input sequence is defined, ݊ is the length
of that sequence, ݈ is the length of LIS of that sequence,
widthሺࣞሻ is the width of ࣞ, codeሺࣞሻ is the sufficient amount
of memory to represent any element of ࣞ, complexityሺࣞሻ is
the sufficient amount of operations to find out the order
between any two elements of ࣞ.

3. THE GENERALIZATION OF
FRIEDMAN’S ALGORITM
As it had been mentioned before, at [1] there is described an
online algorithm (Friedman’s algorithm) which finds the
length of LIS of sequence of integers. Further that algorithm
is shortly described and it is shown how to generalize that
algorithm for the case when the input sequence consists of
elements of partially ordered domain.
 Let ܺ ൌ ሺݔଵ, ڮ , ሻ be a sequence defined onݔ
domain ሼ0, ڮ , ݉ െ 1ሽ. For ݇ ൌ 1, ڮ , ݊ let ܺ ൌ ሺݔଵ, ڮ , ሻݔ
and let ݈ denote the length of LIS of ܺ. For ݇ ൌ 1, ڮ , ݊ and
݅ ൌ 1, ڮ , ݈ let ݉

 denote the minimal element among last
elements of all increasing subsequences of ܺ with length ݅.
Note, that
 ݉

ଵ ڮ ݉
ೖ, (4)

because the last element of each increasing subsequence with
length ݅ 1 is also the last element of an increasing
subsequence with length ݅. We will call sequence ݉

ଵ, ڮ , ݉
ೖ

the characteristic sequence of ܺ. To find the length of LIS of
sequence ܺ, Friedman’s algorithm sequentially handles
elements of ܺ and while handling ሺ݇ 1ሻ-th element of ܺ,
constructs the characteristic sequence of ܺାଵ, based on
characteristic sequence of ܺ. It is clear that the length of
characteristic sequence of ܺ (i.e. of ܺ) is the length of LIS of
ܺ. Note, that if ݉

ೖ ାଵ, then the characteristic sequenceݔ
of ܺାଵ is the following
 ݉

ଵ, ڮ , ݉
ೖ, ାଵ, (5)ݔ

and otherwise, if ݆ denotes the lowest integer, such that
ାଵݔ ൏ ݉

ೖ , then the characteristic sequence of ܺାଵ is the
following
 ݉

ଵ, ڮ , ݉
ೖିଵ, ,ାଵݔ ݉

ೖାଵ, ڮ , ݉
ೖ. (6)

Thus while handling ሺ݇ 1ሻ-th element of ܺ, Friedman’s
algorithm constructs the characteristic sequence of ܺାଵ,
based on (5) and (6). It is easy to check, that in such case
Freidman’s algorithm will use ܱሺ݈ · log ݉ሻ bits of memory
and when handling next element, will perform ܱሺlog ݈ሻ
operations, where the input sequence is defined on domain
ሼ0, ڮ , ݉ െ 1ሽ and ݈ is the length of LIS of that sequence.
 For now, let us generalize Friedman’s algorithm for
the case when the input sequence is defined on partially
ordered domain. Let ܺ ൌ ሺݔଵ, ڮ , ሻ be a sequence definedݔ
on some partially ordered domain ࣞ ൌ ሺܦ, ሻ. As before, letع
ܺ ൌ ሺݔଵ, ڮ , .ሻ and let ݈ denote the length of LIS of ܺݔ
For ݇ ൌ 1, ڮ , ݊ and ݅ ൌ 1, ڮ , ݈ let ܮ

 denote the set of last
elements of all increasing subsequences of ܺ with length ݅.
Let ܯ

 denote the set of all minimal elements of partially
ordered set ൫ܮ

 , ܮ ,൯. In the case of sequence of integersع

consists of integers and there is one minimal element of ܮ

(upper that element is denoted by ݉
). In analogy with the

case of sequence of integers, we will call the sequence
ܯ

ଵ, ڮ , ܯ
ೖ the characteristic sequence of ܺ. Current

generalization of Friedman’s algorithm consists in designing

 ڮ
 ڮ

݇ 1

ܳ
ೖ ܳ

ଵ ܳ
ೖିଵ ܳ

ೖ

ܳାଵ
ೖ

ࣲ ൌ ሺ ܲ
ଵ, ՚ሻ

ቀ ܲ

ೖ , ՚ቁ

ቀ ܲାଵ
ೖ , ՚ቁ

ࣲାଵ ൌ ሺ ܲାଵ
ଵ , ՚ሻ

 ڭ

picture 1

an algorithm which constructs ܯାଵ
ଵ , ڮ , ାଵܯ

ೖశభ based on
ܯ

ଵ, ڮ , ܯ
ೖ.

 Observe now, that if ݖ א ܮ
ାଵ, i.e. if ݖ is the last

element of some increasing subsequence of ܺ with length
݅ 1, then by removing the first element of that sequence we
will get an increasing subsequence of ܺ with length ݅. This
means that
ܮ

ଵ ل ڮ ل ܮ
ೖ . (7)

Let us remember, that ܯ
 denotes the set of minimal elements

of ൫ܮ
 , ܯ ൯. It is clear, thatع

 is an antichain of ࣞ. Let us
define a relation on set of all antichains of ࣞ and denote it by
 of ࣞ we ܤ and ܣ in the following way. For any antichains ,ع
will consider ܣ ع there is an ܤ if for any element of ,ܤ
element of ܣ to which it succeeds, i.e.
ܣ ع ܾ if ܤ א ܽ ܤ א ሺܽ ܣ ع ܾሻ. (8)
As will readily be observed, (8) defines a partial order on the
set of all antichains of ࣞ. Also it is easy to check that (7)
directly implies the following:
ܯ

ଵ ع ڮ ع ܯ
ೖ. (9)

Observe now, that if ܯ
ೖ ع ሼݔାଵሽ (here symbol ع denotes

the relation defined by (8)), then the characteristic sequence of
ܺାଵ is the following
ܯ

ଵ, ڮ , ܯ
ೖ, ሼݔାଵሽ, (10)

because in this case ݔାଵ is the last element of any increasing
subsequence of ܺାଵ with length ݈ 1. Otherwise, if ݆
denotes the lowest integer, such that ܯ

ೖ ڟ ሼݔାଵሽ, then the
characteristic sequence of ܺାଵ is the following

ܯ
ଵ, ڮ , ܯ

ೖିଵ, minቀܯ
ೖ ሼݔାଵሽቁ , ܯ

ೖାଵ, ڮ , ܯ
ೖ, (11)

where minቀܯ
ೖ ሼݔାଵሽቁ denotes the set of minimal (in

terms of partially ordered set ࣞ) elements among elements in
ܯ

ೖ ሼݔାଵሽ (see picture 2). To make sure in this, we will

prove following four claims. Let us remember, that ܮ

denotes the set of last elements of all increasing subsequences
of ܺ with length ݅, ܯ

 is the set of minimal elements among
them and ݆ denotes the lowest integer, such that ܯ

ೖ ڟ
ሼݔାଵሽ.
Claim 1. If ܯ

ೖ ڟ ሼݔାଵሽ then ݈ାଵ ൌ ݈. ז
Claim 2. ܯାଵ

 ൌ ܯ
 for ݅ ൌ 1, ڮ , ݆ െ 1.

Proof. In this case ܯ
 ع ሼݔାଵሽ and ܮାଵ

 ൌ ܮ
 ሼݔାଵሽ so

ାଵܯ
 ൌ ܯ

 ז .
Claim 3. ܯାଵ

 ൌ ܯ
 for ݅ ൌ ݆ 1, ڮ , ݈.

Proof. In this case ܮାଵ
 ൌ ܮ

 so ܯାଵ
 ൌ ܯ

 ז .
Claim 4. ܯାଵ

ೖ ൌ minቀܯ
ೖ ሼݔାଵሽቁ.

Proof. In this case ܯ
ೖ ڟ ሼݔାଵሽ and ܮାଵ

ೖ ൌ ܮ
ೖ ሼݔାଵሽ so

ାଵܯ
ೖ ൌ minቀܯ

ೖ ሼݔାଵሽቁ. ז
Thus, while handling ሺ݇ 1ሻ-th element of ܺ, the current
generalization of Friedman’s algorithm constructs the
characteristic sequence of ܺାଵ, based on (10) and (11). As
will readily be observed, that algorithm can be designed such,

that it will use ܱ൫݈ · widthሺࣞሻ · codeሺࣞሻ൯ bits of memory
and when handling next element, will perform ܱ൫log ݈ ·
widthሺࣞሻ · complexityሺࣞሻ൯ operations, where ࣞ is the
partially ordered domain on which the input sequence is
defined, ݈ is the length of LIS of that sequence, widthሺࣞሻ is
the width of ࣞ, codeሺࣞሻ is the sufficient amount of memory
to represent any element of ࣞ, complexityሺࣞሻ is the
sufficient amount of operations to find out the order between
any two elements of ࣞ.
 The factor widthሺࣞሻ in the estimation for memory
usage ܱ൫݈ · widthሺࣞሻ · codeሺࣞሻ൯ is quite coarse, because the
number of elements in antichains ܯ

 (݇ ൌ 1, ڮ , ݊ and
݅ ൌ 1, ڮ , ݈) is considerably less then widthሺࣞሻ. Statistical
information provided at the next point reflects this fact.

4. SOME STATISTICAL INFORMATION
At this point some statistical information is provided which
describes the work of above mentioned Friedman’s
generalized algorithm for the case when elements of input
sequence are elements of Boolean cube. Graphic 1 expresses

the dependency of ratio of the average number of elements in
antichains, which consist the characteristic sequence and the
width of the partially ordered domain (in this case, 16
dimensional Boolean cube) on which the input sequence is
defined. As graphic 1 shows, in average this ratio decreases
when the length of the input sequence increases. For this case
in practice it uses about 16 times less amount of memory then
݈ · widthሺࣞሻ · codeሺࣞሻ is.

5. CONCLUSION
Roughly speaking, characteristics of the generalized algorithm
are the same as characteristics of the original algorithm but
the factor of widthሺࣞሻ (see the table bellow).

 memory time
Original ܱሺ݈ · log ݉ሻ ܱሺlog ݈ሻ

Generalized ܱ൫݈ · widthሺࣞሻ
· codeሺࣞሻ൯

ܱ൫log ݈ · widthሺࣞሻ
· complexityሺࣞሻ൯

For integer domain (i.e. when widthሺࣞሻ ൌ 1), we have
codeሺࣞሻ ൌ log ݉ and complexityሺࣞሻ ൌ 1.

REFERENCES
[1] M. Friedman, "On computing the length of longest
increasing subsequences", Discrete Mathematics, pp. 11:29–
35, 1975.
[2] M. Gaber, A. Zaslavsky, S. Krishnaswamy, "Mining Data
Streams: A Review", SIGMOD Record, Vol. 34, No. 2, pp.
18–26, 2005.
[3] D. Liben-Nowel, E. Vee, A. Zhu, "Finding Longest
Increasing and Common Subsequences in Streaming Data",
pp. 1-15, 2003.
[4] G. Birkhoff, "Lattice theory", New York, p. 24, 1948.
[5] A. Frank, "On chain and antichain families of partially
ordered set", Journal of Combinatorial Theory, Series B 29,
pp. 176–174, 1980.

 ڮ
 ڮ

 ାଵݔ

ܯ
ೖ ܯ

ଵ ܯ
ೖିଵ ܯ

ೖ

ାଵܯ
ೖ

 ڭ

picture 2

 ڭ

graphic 1

