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ABSTRACT
A method of construction of empirical associate measures for
components of two-dimensional random vector in threshold
copula models is proposed. It is shown that for such models
Spearman’s rank correlation coefficient and Kendall’s con-
cordance coefficient are the linear functions of two-sample
Wilcoxon statistics.
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1. INTRODUCTION
In two-dimensional data analysis situations arise when rather
high values of certain empirical measures of association such
as Spearman’s rank correlation and Kendall’s concordance
cannot be interpreted as monotone dependence between com-
ponents of two-dimensional random vector. In particular,
this refers to threshold dependence structures in which one
of the components serves as categorizing variable for the
other. In case under consideration the observed sequence
can be divided on two or more groups concentrating along
some line on plane, while correlation between components
inside each group is missed.

The separation of two, or many groups is based on quan-
tiles of the categorizing variable, called thresholds which are
not known in general. To obtain consistent estimates of un-
known threshold in one-threshold model Safaryan, Haroutu-
nian and Manasyan in [1] applied the change-point detection
technique. The representation of dependence of two dimen-
sional random vector components by copulas was derived
in [2]. We propose a method of construction of empirical
measures for two-dimensional dependence structures with
applying the results obtained in [2] as well as the function
of concordance between two copulas defined by Nelsen in
[3] and empirical copula notion introduced by Fermanian,
Radulovic and Wegkamp in [4].

2. ASSOCIATION MEASURES FOR ONE-
THRESHOLD COPULA MODELS

Let (X, Y ) be a random vector with two-dimensional dis-
tribution function (DF) F (x, y), continuous marginal DF’s
FX(x) and FY (y) and corresponding copula C(u, v). We
remind that copula C(u, v) is a function, which connects

two-dimensional DF with marginal DF’s by relationship

F (x, y) = C(FX(x), FY (y)).

The concordance function K(C1, C2), defined by Nelsen in
[3], denotes the difference between the probabilities of con-
cordance and disconcordance of random vectors (X1, Y1) and
(X2, Y2) with copulas C1(u, v), C2(u, v), i.e.

K(C1, C2) = Pr((X1 −X2)(Y1 − Y2) > 0)−

−Pr((X1 −X2)(Y1 − Y2) < 0).

It can be presented in the form

K(C1, C2) = 4

∫

D

∫
C2(u, v)dC1(u, v)− 1, (1)

or in an equivalent form as

K(C1, C2) = 1− 4

∫

D

∫
∂C2(u, v)

∂u

∂C1(u, v)

∂u
dudv, (2)

where D = [0, 1]× [0, 1] is the unique square.

Then, as it is shown in [3] many measures of association
between random variables (RV’s) X and Y whose copula is
C can be defined in terms of concordance function. For
instance, Spearmans correlation coefficient ρC is propor-
tional to concordance function with arguments C1 = C and
C2 = Π = uv, that is

ρC = 3K(C, Π).

and Kendall’s concordance coefficient τC is equal to K(C, C)
Thus taking in account (1) well-known representation for ρC

and τC can be obtained, namely,

ρC = 12

1∫

0

1∫

0

(C(u, v)− uv)dudv (3)

and

τC = 12

1∫

0

1∫

0

C(u, v)dC(u, v)− 1. (4)

We introduce notion of threshold copulas and derive corre-
sponding expressions for ρC and τC .

Definition 1: A copula Cp(u, v) depending on scalar pa-
rameter p ∈ (0, 1), is called one–threshold if u = p is a single
point for which the following relations hold

Cp(u, v)

v
=

Cp(p, v)

p
, u ≤ p,

v − Cp(u, v)

1− u
=

v − Cp(p, v)

1− p
, u > p,

and

Cp(u, v) 6= pv.



Theorem 1: Spearman’s correlation coefficient ρCp for one-
threshold copula Cp is the following:

ρCp = 6

1∫

0

Cp(p, v)dv − 3p. (5)

For Kendall’s concordance coefficient the following relation
is true

τCp =
2

3
ρCp .

Proof: We note that definition of one-threshold copula com-
pletely coincide with definitions of the threshold dependence
between RV’s X and Y expressed in terms of conditional dis-
tributions of RV Y under conditions {X ≤ µ}, {X > µ},
brought in [3] if p = FX(µ). Consequently, Cp can be rep-
resented as follows

Cp(u, v) = uv+
1

p(1− p)
(C(p, v)−pv)(min(u, p)−pu). (6)

The further proof immediately follows by substitution of (6)
in (3) and (4) and integration of the derived quintile.

The obtained expressions for Spearmann’s and Kendall’s co-
efficients allow to construct estimators for τC and ρC which
are based only on ranks of Y and propose a new algorithm
for the estimation of parameter p .

3. ESTIMATORS FOR ONE-THRESHOLD
DEPENDENCE CASE

The sample versions of measures of association can be de-
scribed by empirical copula function ĈN (u, v), which has
been established by Fermanian, Radulovic and Wegkamp in
[4].

Let {(Xn, Yn)N
n=1} be a random sample from RV (X, Y ),

with DF F (x, y), marginal DF’s FX(x) and FY (y) and cop-
ula C(u, v). Consider the following empirical functions:

F̂N,X(x) = #{Xn : Xn ≤ x} =
1

N

N∑
n=1

1{Xn ≤ x},

where 1 {A} is the indicator of event A. Let

F̂N,Y (y) =
1

N

N∑
n=1

1{Yn ≤ y},

F̂N (x, y) = #{(Xn, Yn) : Xn ≤ x, Yn ≤ y} =

=
1

N

N∑
n=1

1{Xn ≤ x} × 1{Yn ≤ y}.

The cadlag version of empirical copula, according to [4] is
defined as follows

ĈN (u, v) =
1

N

N∑
n=1

1{F̂N,X(Xn) ≤ u, F̂N,Y (Yn) ≤ v}. (7)

A representation of empirical copula suggested in [5] is the
following

ĈN (u, v) =
1

N

N∑
n=1

1{ RXn

N + 1
≤ u} × 1{ RYn

N + 1
≤ v}, (8)

where RXn and RYn are ranks of RV’s Xn and Yn in se-
quences {Xn}N

n=1 and {Yn}N
n=1 respectively. After replacing

C(u, v) in (3) with ĈN (u, v) given in (8) we obtain Spear-
man’s rank correlation coefficient between RV’s X and Y ,
in the form

ρ̂C =
12

N(N + 1)2

N∑
n=1

(RXn −
N + 1

2
)(RYn −

N + 1

2
).

For the threshold models we obtain sampling estimates of
ρCp by substituting (8) in (5). Then the following theorem
holds.

Theorem 2: Expression of Spearman’s rank coefficients for
one-threshold model are the following:

ρ̂Cp =
6

(N + 1)N

[Np]∑
n=1

(N + 1−RY
′
n
)− 3p, (9)

Where {Y ′
n, }N

n=1 is the of induced order statistics sequence,

(i.e. for X(1) < X(2) < < X(N) induced statistic Y
′

n is

defined as Y
′

n = Yi, if X(n) = Xi.

Proof:

ρ̂cp = 6

1∫

0

ĈN (p, v)dv − 3p =

6

N(N + 1)

N∑
n=1

N∑
j=1

1{RXn ≤ p} × 1{RYn ≤
RYj

N + 1
} − 3p =

=
6

N(N + 1)

[Np]∑
n=1

N∑
j=1

1{RY
′
n
≤ RYj} − 3p.

The last expression proves (9).

Let

WN (
n

N
) =

N

N − n
(
1

n

n∑
i=1

R
Y
′
i

N + 1
− 1

2
), n = 1, N − 1, (10)

is the sequence of Wilcoxon statistic, which tests homogeinety

of two samples, {Y ′
i }n

i=1 and {Y ′
i }N

i=n+1.
Then from Theorem 2 can be deduced the following conse-
quences:

Corollary 1: Rank correlation coefficient of Spearman is

the linear function from Wilcoxon statistic WN (n(p)
N

), n(p) =
[pN ] defined by relation

ρ̂cp = −6(N − n(p))n(p)

N2
WN (

n(p)

N
) + 3(

n(p)−Np

N
). (11)

We use (11) to estimate ρcp if n(p) is known, otherwise a
change point technique proposed in [1] can be applied

Let

n̂ = arg max
0<n<N

|WN (
n

N
)|

and

W ∗
N = WN (

n̂

N
)

√
12(1− n̂

N
)n̂.

Then, a consisent estimate of ρcp is defined in the following

Corollary 2: If W ∗
N > zα, or W ∗

N < 1 − zα, where zα is
quantile of level α of RVZ distributed as N (0, 1), then the
consistent estimate of p is defined by

p̂ =
n̂

N
,



and consistent estimator of ρCp is the following

ρ̂Cp = −6(1− p̂)p̂WN (p̂).

Proof: The induced order statistic sequence {Yn,X}N
n=1

can be viewed as a random sample from conditional DF
F (y|x) = Pr{Y ≤ y|X = x}. As it follows from Definition
1 that probabilities

Pr{Y ′
n ≤ y|X = F−1(p)}, n = 1, N,

are the same if n ≤ [Np] and the other if n > [Np] then the
number n(p) = [Np] can be called the shangepoint for the

sequence {Y ′
n}N

n=1.

4. ESTIMATORS FOR TWO-THRESHOLD
DEPENDENCE CASE

Similar results can be obtained for cases of two and more
thresholds.

Definition 2: A copula Cp depending on vector parameter
p = (p1, p2), 0 < p1 < p21 < 1 is called two-threshold is
there exist exactly two values u = p1 and u = u2 such that
relations holds

Cp(u, v)

u
=

Cp(p1, v)

p1
, for u ≤ p1,

Cp(u, v)− Cp(p1, v)

u− p1
=

Cp(p2, v)− Cp(p1, v)

p2 − p1
,

for p1 < u ≤ p2,

v − Cp(u, v)

1− u
=

v − Cp(p2, v)

1− p2
, for u > p2,

and

p2Cp(p1, v) 6= p1Cp(p2, v),

(p2 − p1) 6= p1Cp(p2, v).

Theorem 3: Spearman’s correlation coefficient ρcp for two-
threshold copula Cp is equal to

ρcp = 6

1∫

0

p2Cp(p1, v) + (1− p1)Cp(p2, v)− 3p2.

For Kendall’s concordance coefficients the following relation
is true

τcp =
2

3
ρcp .

Proof: We note that dependence between RV’s X and Y ex-
pressed in terms of conditional distributions of RV Y under
conditions {X ≤ µ1}, {X > µ2}, {µ1 < X ≤ µ2} brougth
in [3], if p1 = FX(µ1), p2 = FX(µ2). can be represented by
Cp as follows

Cp(u, v) = uv + ∆1(v,p)(min(u, p1)− p1u)+

∆1(v,p)(min(u, p2)− p2u),

where

∆1 =
1

p1(p2 − p1)
(p2(Cp(p1, v)−p1v)−p1(Cp(p2, v)−p2v)),

and

∆2 =
(1− p1)(Cp(p1,−p2v)− (1− p2)(Cp(p1, v)− p1v))

(1− p2)(p2 − p1)

The proof is similar of the proof of Theorem 1.

Theorem 4. Expression of Spearman’s rank coefficient for
two-threshold model is the following:

ρ̂cp =
6

(N + 1)N
(

[Np1]∑
n=1

p2(N + 1−RY
′
n
)+

+

[Np2]∑
n=1

(1− p1)(N + 1−RY
′
n
− 3p2)

The further extension of the noted results are connected
with empirical threshold copulas of the K-dimensional ran-
dom vector X(1), ..., X(K) in the case, when RV X(1) serves
categorizing variable for X(2), ..., X(K).
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