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ABSTRACT
In this paper we study generalized model of discrete mem-
oryless channel (DMC) with finite input and output alpha-
bets and random state sequence (side information) partially
known to the encoder, channel and decoder. The study
includes family of Gel’fand-Pinsker and information hiding
coding problems as special cases. Information is to be reli-
ably transmitted through the noisy channel selected by ad-
versary. Reasoning from applications the actions of encoder
and adversary are limited by distortion constraints. The en-
coder and decoder depend on a random variable (RV) which
can be treated as cryptographic key. Two cases are consid-
ered, when the joint distribution of this RV and side informa-
tion is given or this RV is independent from side information
and it’s distribution can be chosen for the best code gener-
ation. We investigate the rate-reliability-distortion function
for the mentioned model and derive the lower bound for it.

1. INTRODUCTION
The DMC with random state information available to the
encoder was studied by Gel’fand and Pinsker [1], they de-
rived the capacity of this channel. The capacity of arbitrary
varying channel with side information at the encoder was
derived by Ahlswede [2]. Error exponents of single-user,
multi-user and varying channels with side information were
studied in [3, 4, 5, 6, 7].

It was discovered that embedding and hiding [8] is closely
related to the channel with random parameter, where the
cover signal plays the role of the state information. The dif-
ference between the two problems is that in various formula-
tions of data-hiding and watermarking there are distortion
constraints for the transmitter and a memoryless adversary
and the channel is not fixed as it is chosen by adversary. Mo-
tivated by data-hiding applications several models are stud-
ied, where partial or no information of the state sequence is
available to the encoder, channel designer and decoder. Re-
sults on capacity and error exponents problems have been
obtained in [8, 9, 10, 11, 12, 13].

A unified framework for studying such problems was first
suggested by Cover and Chiang [14], who considered the
channel with two-sided state information, where the sender
and the receiver have correlated but different state infor-
mation. This model includes four possible situations of the
channel with random parameter as special cases. They ob-
tained the capacity of this channel and explored the duality
with source coding problems. The random coding bound of
E-capacity for this model was derived in [15].

Later Moulin and Wang [16] studied the generalized model
with side information, where the degraded versions of side
information are distributed among encoder, adversary and
decoder. This model includes also the various cases of in-
formation hiding. They derived the capacity formulas and
random coding exponents for compound discrete memory-
less channels and channels with arbitrary memory.

In this paper we study a similar generalized model of dis-
crete memoryless channel (DMC) with finite input and out-
put alphabets and random state sequence (side information)
partially known to the encoder, channel and decoder (fig. 1).
Information is to be reliably transmitted through the noisy
channel selected by adversary.
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Figure l. Generalized model of a channel with side

information

Distortion constraints are imposed on the encoder called
transparency requirement and on the attacker called robust-
ness requirement.

The encoder and decoder depend on a random variable (RV)
which can be treated as cryptographic key. Two cases are
considered, when the joint distribution of this RV and side
information is given or this RV is independent from side
information and it’s distribution can be chosen for the best
code generation.

We investigate the rate-reliability-distortion function for the
mentioned model and derive the lower bound for it. This
function expresses the dependence of the information hiding
rate on reliability and distortion levels for information hider
and attacker. This investigation is equivalent to studying
of error exponents but sometimes is more expedient. This
approach was first introduced by E. Haroutunian [17, 18, 19]
and developed for various channels [4, 5, 7, 9, 10, 13, 15].
In this paper we derive the lower bound (random coding
bound) of rate-reliability-distortion function .

The paper is organized as follows. Definitions of terms and
notations used throughout the paper are described in section
2. The formulation of the main result and its special cases
are stated in the section 3.



2. NOTATIONS AND DEFINITIONS
Capital letters are used for RV K, S1, S2, S3, U, X, Y taking
values in the finite sets K,S1,S2, S3,U ,X ,Y, correspond-
ingly, and lower case letters k, s1, s2, s3, u, x, y for their re-
alizations. Small bold letters are used for N -length vectors
x = (x1, .., xN ) ∈ XN . The cardinality of the set X we
denote by |X |. The notation |a|+ will be used for max(a, 0).

The generalized model of a channel with side information
is depicted in Figure 1. A message m to be transmitted
through an attack channel to the receiver is uniformly dis-
tributed over the message set M. The joint state sequence
is described by random variable S = (S1, S2, S3) the compo-
nents of which represent the partial information known to
the encoder, adversary and decoder, correspondingly. Ran-
dom variable K represents separate information known only
to the encoder and decoder.

Two cases are considered, when the joint PD

Q
∗ = Q

∗
0 ◦ Q

∗
1 ◦ Q

∗
2 ◦ Q

∗
3 = {Q∗(k, s1, s2, s3) =

= Q
∗
0(k)Q∗

1(s1|k)Q∗
2(s2|k, s1)Q

∗
3(s3|k, s1, s2),

k ∈ K, s1 ∈ S1, s2 ∈ S2, s3 ∈ S3}

is given or K is independent from side information and it’s
distribution can be chosen for the best code generation.

It is assumed that:

Q
∗N (k, s1, s2, s3) =

N
Y

n=1

Q
∗(kn, s1n, s2n, s3n).

The transmitter encodes the message m using s1 and k.
The resulting codeword x ∈ XN is transmitted via attack
channel A(y|x, s2). The attacker produces corrupted blocks
y ∈ YN . The decoder does not know A(y|x, s2) selected by
adversary and possessing s3 derives the message m′.

Following probability distributions are used in the paper:

Q = Q0 ◦ Q1 ◦ Q2 ◦ Q3 = {Q(k, s1, s2, s3) =

= Q0(k)Q1(s1|k)Q2(s2|k, s1)Q3(s3|k, s1, s2),

k ∈ K, s1 ∈ S1, s2 ∈ S2, s3 ∈ S3},

P = P0 ◦ P1 = {P (x, u|k, s1) = P0(u|k, s1)P1(x|u, k, s1),

x ∈ X , u ∈ U , k ∈ K, s1 ∈ S1},

V = {V (y|k, s1, s2, s3, u, x),

y ∈ Y, k ∈ K, s1 ∈ S1, s2 ∈ S2, s3 ∈ S3, u ∈ U , x ∈ X},

Q
∗
3◦A = {Q∗

3◦A(y, s3|x, k, s1, s2) = Q
∗
3(s3|k, s1, s2)A(y|x, s2),

y ∈ Y, k ∈ K, s1 ∈ S1, s2 ∈ S2, s3 ∈ S3, x ∈ X},

QP (x, s2) =
X

k,s1,u

Q0(k)Q1(s1|k)Q2(s2|k, s1)P (x, u|k, s1).

For brevity we will write indices of Q separated by comma,
when mentioning product of respective probability distribu-
tions (or types). E.g. Q0,1,2 = Q0 ◦ Q1 ◦ Q2.

For the information-theoretic quantities, such as entropy
HQ0,Q1,Q2

(K, S1, S2), mutual information IQ0,Q1,P0
(U∧S1),

divergence D(Q0||Q
∗
0) and for the notion of type we refer

to [19, 20, 21, 22].

The following properties [20, 21] are used in proofs:

for k ∈ TQ0
(K), s1 ∈ TQ0,Q1

(S1|k), s2 ∈ TQ0,Q1,Q2
(S2|k, s1),

x ∈ TQ0,Q1,P (X|k, s1), (y, s3) ∈ TQ,P,V (Y, S3|x,k, s1, s2),

Q
∗N
3 ◦ A

N (y, s3|k,x, s1, s2) =

= exp{−N(HQ,P,V (Y, S3|X, K, S1, S2)+

+D(Q3 ◦ V ||Q∗
3 ◦ A|Q0, Q1, Q2, P )}, (1)

D(Q ◦ P ◦ V ||Q∗ ◦ P ◦ A) = D(Q0,1,2||Q
∗
0,1,2)+

+D(Q3 ◦ V ||Q∗
3 ◦ A|Q0, Q1, Q2, P ), (2)

D(Q||Q∗) = D(Q0||Q
∗
0)+D(Q1||Q

∗
1|Q0)+D(Q2||Q

∗
2|Q0, Q1)+

+D(Q3||Q
∗
3|Q0, Q1, Q2), (3)

HQ,P,V (Y, S3|U, X, K, S1, S2) ≤ HQ,P,V (Y, S3|X, K, S1, S2).
(4)

All logarithms and exponents in the paper are of the base
2.

The mappings d1 : S1 × X → R
+ and d2 : X × Y → R

+

are distortion functions over the encoder and attacker corre-
spondingly. They are supposed to be symmetric (d1(s1, x) =
d1(x, s1) and d2(x, y) = d2(y, x), s1 ∈ S1, x ∈ X , y ∈ Y) and
become 0 if s1 = x and x = y. Distortion functions for
N -length vectors are defined as:

d
N
1 (s1,x) =

1

N

N
X

n=1

d1(s1n, xn), dN
2 (x,y) =

1

N

N
X

n=1

d2(xn, yn).

Let ∆1 ≥ 0 be the number indicating the allowed distortion
level for the encoder and ∆2 ≥ 0 for the attacker.

The N -length code is a pair of mappings (fN , gN ), where

fN : M×KN × SN
1 → XN

,

is the encoding function which satisfies the following distor-
tion constraint:

d
N
1 (s1, fN (m,k, s1)) ≤ ∆1, (5)

for all m,k, s1 and

gN : YN ×KN × SN
3 → M.

is the decoding function.

Note that definition of the distortion constraint (5) means
that maximum distortion constraint is used, which is stronger
condition than average distortion constraint over m ∈ M,
k ∈ KN and s1 ∈ SN

1 i.e. if we find fN satisfying (5) it will
also satisfy average distortion constraint.

N is called code length and |M| is called code volume. The
nonnegative number R = 1

N
log |M| is called code rate.

The selected channel is memoryless, it means that for x ∈
XN , y ∈ YN and s2 ∈ SN

2 :

A
N (y|x, s2) =

N
Y

n=1

A(yn|xn, s2n)

and satisfies the following distortion constraint for QP N :
X

s2,x,y

QP
N (x, s2)A

N (y|x, s2)d2(x,y) ≤ ∆2. (6)



A memoryless covert channel P , subject to distortion ∆1, is
probability distribution P such that for any Q0,1:

X

k,s1,u,x

Q0,1(s1, k)P (x, u|k, s1)d1(s1, x) ≤ ∆1. (7)

The set of probability distributions P satisfying condition
(7) is denoted by P(Q0,1, ∆1).

A memoryless attack channel A, subject to distortion ∆2

is defined by probability distribution A such that for any
Q0,1,2 and P :

X

k,s1,s2,u,x,y

Q0,1,2(k, s1, s2)P (x, u|k, s1)A(y|x, s2)d2(x, y) ≤ ∆2.

(8)
The set of channels A satisfying condition (8) is denoted by
A(Q0,1,2, P, ∆2).

We will consider cases when the distribution of k is either
given or it is independent of state sequences and it is not
given but rather selected in a way to achieve minimal error
probability.

In the first case the probability of erroneous reconstruction
of message m for P ∈ P(Q∗

0,1, ∆1), A ∈ A(Q∗
0,1,2, P, ∆2) is

calculated in the following way:

e
1(m, A) = e(fN , gN , A, Q

∗
, ∆1, ∆2, m) =

=
X

k,s1,s2

Q
∗N
0,1,2(k, s1, s2)×

×Q
∗N
3 ◦ A

N (YN × SN
3 \g−1

N,k
(m)|fN (m,k, s1),k, s1, s2),

where g−1

N,k
(m) = {y, s3 : gN (y,k, s3) = m}.

In the second case the erroneous reconstruction probability
can be calculated in the following way:

e
2(m, A) = e(fN , gN , A, Q

∗
, ∆1, ∆2, m) =

= min
Q0

X

k,s1,s2

Q
N
0 (k)Q∗N

1,2 (s1, s2)×

×Q
∗N
3 ◦ A

N (YN × SN
3 \g−1

N,k
(m)|fN (m,k, s1), s1, s2).

The maximal value of error probability of the code over all
A for given message m is denoted by:

e
i(m) = e

i(fN , gN , Q
∗
, ∆1, ∆2, m) = max

A
e

i(m, A), i = 1, 2.

The maximal error probability of the code over all m ∈ M
is equal to:

e
i = e

i(fN , gN , Q
∗
, ∆1, ∆2) = max

m∈M
e

i(m), i = 1, 2

and the average error probability of the code over all m ∈ M
is:

ei = ei(fN , gN , Q
∗
, ∆1, ∆2) =

1

|M|

X

m∈M

e
i(m), i = 1, 2.

3. FORMULATION OF RESULTS
The E-capacity for maximal error probability is denoted by
Ci(E, Q∗, ∆1, ∆2) and is defined in the following way:

C
i(E, Q

∗
, ∆1, ∆2) = lim

N→∞

1

N
log M

i(E, Q
∗
, ∆1, ∆2, N),

where

M
i(E, Q

∗
, ∆1, ∆2, N) = sup

fN ,gN

n

|M| : e
i ≤ exp(−NE)

o

, i = 1, 2.

The E-capacity for the average error probability is denoted
by Ci(E, Q∗, ∆1, ∆2).

We can observe that E-capacity is the generalization of the
capacity because it converges to channel capacity when E →
0. To introduce the main theorem denote:

R(E, Q
∗
, A, Q, P, V ) = IQ,P,V (U∧S3, Y |K)−IQ0,Q1,P0

(U∧S1|K)+

+D(Q ◦ P ◦ V ||Q∗ ◦ P ◦ A) − E,

R
1
r(E, Q

∗
, ∆1, ∆2) = min

Q0,Q1,Q2

max
P∈P(Q0,1,∆1)

min
A∈A(Q0,1,2,P,∆2)

min
Q3,V :D(Q◦P◦V ||Q∗◦P◦A)≤E

˛

˛

˛

˛

˛

R(E, Q
∗
, A, Q, P, V )

˛

˛

˛

˛

˛

+

(9)

and

R
2
r(E, Q

∗
, ∆1, ∆2) = max

Q0

min
Q1,Q2

max
P∈P(Q0,1,∆1)

min
A∈A(Q0,1,2,P,∆2)

min
Q3,V :D(Q1,2,3◦P◦V ||Q∗

1,2,3
◦P◦A|Q0)≤E

˛

˛

˛

˛

˛

R(E, Q
∗
, A, Q, P, V )

˛

˛

˛

˛

˛

+

.

(10)

Theorem. For generalized channel with distortion con-
straints imposed on the encoder and channel, for given Q∗

and for all E > 0, i = 1, 2

R
i
r(E, Q

∗
, ∆1, ∆2) ≤ C

i(E, Q
∗
, ∆1, ∆2) ≤ Ci(E, Q

∗
, ∆1, ∆2).

Corollary 1. When E → 0, i = 2 we derive the capacity
for both compound discrete memoryless channel and channel
with arbitrary memory established in [16].
Corollary 2. When S2 = (S1, S3), K = ∅ we derive the
E-capacity obtained in [15], which in its turn is generaliza-
tion of the channels for four possible situations with random
parameter.
Corollary 3. When S2 = ∅, S3 = ∅, i = 1 we get the lower
bound of E-capacity obtained in [9].
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