

Distributed Steganographic Data Storage with Verifiable

Dynamic Reconfiguration

 Gevorg Margarov

State Engineering University of
Armenia (Polytechnic)

Yerevan, Armenia
e-mail: gmargarov@gmail.com

Vahan Markarov

State Engineering University of
Armenia (Polytechnic)

Yerevan, Armenia
e-mail: vmarkarov@yahoo.com

Samvel Soghomonyan

State Engineering University of
Armenia (Polytechnic)

Yerevan, Armenia
e-mail: sogsam@seua.am

ABSTRACT
This paper is devoted to creation of high capacity hidden data
storage distributed on the Internet. Offered new approach to
construction of such systems is based on steganographic
content sharing, controllable verification and redistribution of
shares. The storage is designed thus to defend against three
basic types of the adversary: passive, active and dynamic. The
developed algorithm uses threshold sharing schemes and
incorporates a verification capability to support redistribution
between arbitrary sets of carrier files. It is proved that an
adversary cannot combine old shares and new shares to
reconstruct the steganographic content. In contrast to similar
the offered algorithm considers specific features of
steganography and can accommodate dynamic carrier files
group membership changes.

Keywords
Steganography, verifiable reconfiguration, secret sharing,
distributed storage.

1. INTRODUCTION
The Internet can be considered as the most suitable
environment for the latent storage and multi-user access to big
volume of data, using a set of carrier files located on various
sites [1]. The primary goal of such storage is to preserve the
long-term flexible availability and confidentiality of data in
the face of carrier files failures and compromises including as
result of attacks. Thus specificity of attacks on steganographic
systems is that not only the hidden data can be detected, but
also carrier files can be changed, damaged or even removed
by attacker. Another goal is to adapt to the addition or
removal of carrier files. The purpose of this paper is to outline
the design for distributed steganographic data storage that
meets those goals, and present the method of reconfiguration
that is a key component of the storage.

It is usually possible to envision such storage to store data that
is infrequently accessed, but which must remain available and
confidential for long periods of time. In this case it is possible
to trade off longer storage and retrieval latencies in return for
stronger availability and confidentiality guarantees. Such
nature of the storage allows use relatively heavyweight
schemes for distributing the secret data to carrier files. For
instance the steganographic content (secret data) can be

distributed among N carrier files on base of Shamir's scheme

[2] and it is required M (where NM) shares to
reconstruct the secret data. At the same time obviously an

adversary must detect at least M carrier files and get from
them hidden shares to uncover the latent secret. From the
other hand an adversary can detect or damage at least

1 MN carrier files to make storage disabled [3]. In
other words it is possible to consider two versions of
compromising distributed steganographic data storage and
such approach introduces a degree of fault-tolerance and

workability of storage can remain even if MN carrier
files fail. Of course it is necessary to believe that there is
enough diversity among the carrier files such that common
security flaws and failure modes can be ruled out.

2. BASIC ATTACKS AND DEFENCE
AGAINST THEM
The storage is designed thus to defend against three basic
types of the adversary:

 passive,
 active,
 dynamic.

A passive adversary may read the carrier files but not modify
them or cause the behavior of a carrier to damage or remove.
To defend against passive adversary the periodic refreshments
of the shares can be performed [3].

An active adversary corrupts data or carrier files, and may
alter some of them. To defend against active adversaries,
secret sharing must be verifiable as well as in case of
cryptography [4] users should be able to verify the correctness
of dynamic reconfiguration execution, since an active attacker
can interfere in this process.

A dynamic (or mobile) adversary compromises carrier files
progressively, and left unchecked will eventually compromise
enough carrier files to compromise or make storage disabled.
To counteract dynamic adversary the full refreshment of the
steganographic data should be executed periodically [3]. This
scheme assumes a storage model of temporary compromise
(i.e., compromised carrier files can be restored to a clean state
by full refreshment), and that the adversary compromises at

most MN carrier files simultaneously prior to
refreshment.

The desire to defend against passive, active, and dynamic
adversaries require a general sharing scheme in which the
steganographic content can be redistributed dynamically to a
new set of carrier files after the initial sharing. The new
carrier files may form a new access structure, i.e., they may or
may not overlap with the old carrier files, and they may or

may not keep a proportion between N and M values.

A trivial, but insecure, solution for recovering from lost or
compromised carrier files is simply to restore the original
steganographic content by the storage on the base of shares,

extracted from M undetected carriers, and again distributes

the secret among new set of N carrier files. This solution
suffers from an obvious weakness – if adversary can interfere
with refreshment process the storage will appear completely
compromised and confidential data will be lost irrevocably.

More preferable can be a solution that does not involve the
restoration of the steganographic content, in which the work
of redistribution is performed by the remaining (non-
compromised) carrier files. The similar approach exists for
cryptographic systems [5], but specificity of steganography is
that in this case the most essential are the attacks connected
with disclosing of very fact of hidden data existence.
Presented method of verifiable dynamic reconfiguration
considers noted specificity of steganography and generally

replaces access structure),(NM with new arbitrary

structure)','(NM . Thus essential difference is that the

capability to verify validity of the new shares (i.e., that they
can be used together with old noncompromised shares to
reconstruct the original steganographic content). It is
necessary to stress that the ability to perform verification is
essential for distributed steganographic systems where having
some compromised carrier files is the common case rather
than the exception.

3. DATA STORAGE ARCHITECTURE
The high-level view of distributed steganographic data storage
architecture is shown on Figure 1.

Figure 1. The high-level view of distributed steganographic
data storage architecture

Architecture consists of four main components: administrator,
users, adversaries and a group of steganographic containers
(carrier files), distributed on the Internet. Users perform the
initial distribution and final reconstruction of files (i.e.,
secrets), and are considered trusted entities. Adversaries try to
find out the fact of existence of steganographic data storage
and if they are successful, to uncover the latent secret and to
prevent normal functioning of storage (make it disabled).

Administrator manages placing of shares on set of carrier files

)......1(NM and performs redistribution. Though the

number of carrier files that implement the data storage may be

very large, it is supposed that the number of carrier files N
that store shares for a particular file (or set of files) is
relatively small. Thus administrator should provide private
point-to-point links between users and corresponding carrier
files. Administrator requires mechanisms to keep track of the

members of the active group of carrier files, and to determine
when carrier files have joined or left (intentionally or through
failure) the group. When administrator detects changes in the
active group membership, it redistributes the shares to the

new group of carrier files)''...'...1(NM . Administrator

may perform redistribution an arbitrary number of times

)""..."...1(NM prior to reconstruction. It is supposed,

that the rate of change of membership is low compared to the
rate at which users contact the group for I/O operations.

Users require a mechanism to locate the active group of
carrier files for I/O operations. Users are not part of the group
of carrier files (in contrast to peer-to-peer storage systems
such as OceanStore [6]), and thus cannot rely on the group
membership protocol used by the administrator. A simple
approach would be for the user to contact a central directory
that replies with the list of carrier files; administrator would
update the directory after a change in group membership. Of
course, the central directory is an obvious point of
vulnerability in an otherwise decentralized architecture. A
more robust approach is for the user to contact a replicated
directory service that uses agreement protocols to ensure
consistent and valid updates to the list of carrier files (such as
in Farsite [7]).

Users also require a heuristic to select the threshold value

M for given N carrier files. User requires M non-faulty
carrier files to reconstruct the secret, and can tolerate at most

1M faulty carrier files. Thus, it is necessary, that

NMM 1 , or 2/)1(NM . To store a file

in the steganographic data storage, a user locates the active

group of N carrier files and selects the),(NM access

structure to use. It then distributes N shares of the secret to
the carrier files and a witness to the secret to administrator
(described in Section 4.3). When administrator detect that a
carrier file left the group it have to join to the group another
carrier file and redistribute shares of the secret to the new
group. Administrator use the same heuristic as the users to

select the new select the threshold value 'M for 'N carrier
files of the new group. Administrator may redistribute the file
an arbitrary number of times, not informing corresponding
users. Finally, when a user needs to reconstruct the secret, it
locates the active group of carrier files, which may differ from
the group to which it distributed shares initially. The user then

retrieves at least 'M shares and reconstructs the secret.

4. BASICS OF RECONFIGURATION
4.1. Steganographic content sharing scheme
Shamir’s),(NM threshold sharing scheme is based on

polynomial interpolation [2]. To distribute secret K to the

access structure),(NM it is necessary to select an

1M degree polynomial)(xA with constant term K

and random coefficients 11 ... MAA and use it to generate

shares iS for hiding in set of carrier files)(N :

1
1

2
21 ...

 M
Mi iAiAiAKS (1)

To reconstruct K , it is necessary to retrieve M shares iS

form set of carrier files)(M , and use Lagrange

interpolation:

 i ijj

i ij

j
SK

,

 (2)

Thus it is obvious that , otherwise it is impossible to

restore the shared secret correctly.

4.2. Redistribution of shares
For the redistribution of shares of secret K from access

structure),(NM to access structure)','(NM

without requiring the intermediate reconstruction of the secret

using the authorized subset for above considered sharing

scheme by analogy with [5] it is necessary for each i , to

compute the subshares ijŜ of iS on base of the polynomial

1'
)1'(

2
21 '...'')('

 M
Miiiii jAjAjASjA

and send ijŜ to the corresponding 'j . Later for each

'j , generate a new share jS ' by Lagrange

interpolation:

 i ixx

ijj ix

x
SS

,

ˆ' (3)

4.3. Verifiable secret sharing
The application of verification approach to above considered
sharing scheme by analogy with [4] takes advantage of the
homomorphic properties of exponentiation and the
assumption that the computation of discrete logs in a finite
field is intractable.

Suppose we have fields p and r , such that p and r are

prime and 1 pqr (where q is a non-negative integer),

and suppose we have an element rg of order p . Then,

suppose we use above considered sharing scheme with

polynomial)(xA to distribute a secret pK to the

access structure),(NM . In addition to sending the shares

piS to i carrier files, we broadcast witnesses to K

and the coefficients 11 ... MAA of)(xA in the form of

Kg and 11 ... MAA gg . For each carrier file it is possible

to verify that iS is a valid share of K by equation:

1
1

2
21)(...)()(

M
Mi iAiAiAKS ggggg (4)

which is the exponentiation of)(xA . Since it is assumed

that the computation of discrete logs is intractable, no-one can

calculate K or 11 ... MAA from the broadcast of the

witnesses.

5. VERIFIABLE CONTENT

REDISTRIBUTION ALGORITHM
Suggested verifiable steganographic content (secret data)
redistribution algorithm is based on above considered three
basic approaches – data sharing, redistribution and

verification. The algorithm takes as input shares of a
steganographic content distributed to the access structure

),(NM , and outputs shares redistributed to the access

structure)','(NM . It is assumed that the computation of

discrete logs in a finite field is intractable, and that there exist
reliable broadcast and private channels among all users and

administrator. It is also assumed that there are at least M

non-faulty old carrier files, that there are at most 1M

faulty old carrier files, and that there are 'N non-faulty new
carrier files.

The initial distribution of steganographic content proceeds as
in verifiable secret sharing scheme (Section 4.3). The user

distributes the secret K to N carrier files so, that each i

share is defined by the polynomial)(iA . The user also

broadcasts
Kg and 11 ... MAA gg , which each i uses in

Equation (4) to verify the validity of iS . If Equation (5)

holds, administrator stores iS in carrier file i and

corresponding witnesses in special table.

Reconfiguration of the distributed steganographic data storage
proceeds as in inedistribution of shares scheme (Section 4.2).

For each carrier file i from an authorized subset

administrator uses Shamir’s scheme (with the polynomial

)(' jA i) to distribute subshares ijŜ of its share iS to

access structure)','(NM . Administrator may

redistribute K an arbitrary number of times before
user reconstruct it.

For the new carrier files to verify that their shares of the
secret are valid after redistribution, it is required that
two conditions hold. When for all i

iS redistributed to each 'j , all jS ' are valid shares

of K if hold conditions of Equation (2) and Equation (3)

for ' of access structure)','(NM . That is:

' ,'

ˆ
 j jxx

iji jx

x
SS (5)

For the new shares jS ' the condition of validity follows

from Equation (3) for a secret K distributed to access

structure)','(NM . That is:

' ,'

'
 j jxx

j jx

x
SK (6)

In this case administrator has to contact corresponding users
to update table of witnesses. It is necessary to allow users to
verify of shares from the new carrier files. In table of

witnesses for each i must therefore be stored
Kg . Each

user can receives iS from each carrier file to verify that

subshares holds the conditions and can receives witnesses

from the table (including
Kg) to verify that iS is a valid

share of K by:

i

SbK iigg , where

ixx

i ix

x
b

,

 (7)

Equation (7) follows from Equation (2) and the homomorphic
properties of exponentiation. Since it is assumed that the
computation of discrete logs is intractable, no-one can

calculate K from the broadcast of Kg .

6. SUMMARY
The offered new approach to construction of steganographic
systems allows creating high capacity hidden data storage
distributed on the Internet. It is based on simultaneous use of
three basic methods – steganographic content sharing,
controllable verification and redistribution of shares. The
nature of such systems itself calls for heavyweight protection
mechanisms to ensure the long-term availability and
confidentiality of stored data. Additionally, it is necessary to
account for the addition and removal of steganographic carrier
files within the lifetime of the data. The storage is designed
thus to defend against three basic types of the adversary:
passive, active and dynamic. The developed algorithm uses
threshold sharing schemes and incorporates a verification
capability to support redistribution between arbitrary sets of
carrier files.

The analysis of vulnerabilitys of similar cryptographic
algorithms has allowed showing that two conditions (shares
validity and subshares validity) are sufficient to guarantee that
new carrier files have valid shares after redistribution. It is
also proved that an adversary cannot combine old shares and
new shares to reconstruct the steganographic content,

provided that the adversary has less than M old shares and

'M new shares. The developed redistribution algorithm can

tolerate up to 1M faulty old carrier files (provided that

there are at least M honest members). It is pointed out that
the identification and replacement of faulty members of
carrier files active group is not immediately possible if the
new members must rely on the old carrier files to distribute
verification information. It can be shown, that at worst case

M

MN

M

N 1
 restarts are required to eliminate

faulty carrier files and complete the algorithm.

In contrast to similar the offered algorithm considers specific
features of steganography and can accommodate dynamic
carrier files group membership changes. The important
feature of algorithm is possibility to guard against mobile
(dynamic) adversaries with permanent compromise. That is, it
is possible to deal with compromise that cannot be recovered
with a reboot operation. Of course it is still required that at
any given point of time, the number of faulty carrier files in
the active group of containers is less than the threshold value.

For the further development of the offered approach to
construction of high capacity distributed steganographic
systems and its finishing to practical realisation it is necessary
to study in details the nature of steganographic carrier files
failures in a consequence to the "natural" reasons and as a
result of adversary’s purposeful influence. Besides it would be
useful to have a real estimation of complexity of algorithm for
the conditions representing practical interest. Also it would be
necessary to present the strict proof of a correctness and
security of the offered approach.

REFERENCES
[1] G. Margarov, “Data Hiding on the Internet: Steganalysis
against Steganography”, Proceedings of Advanced Research
Workshop “Old threats, new channels – the Internet as a tool
for terrorists”, Berlin, 2008.
[2] A. Shamir, “How to Share a Secret”, Communications of
the ACM, Volume 22, Issue 11, 612-613, 1979.
[3] G. Margarov, V. Markarov, A. Khachaturov,
“Steganographic system with dynamically reconfigurable
structure”, Proceedings of the 2009 International Conference
on Security & Management, SAM'09, Volume 1, Las Vegas,
43-45, CSREA Press, 2009.
[4] P. Feldman, “A practical scheme for non-interactive
verifiable secret sharing”, Proceedings of the 28th IEEE Ann.
Symp. on Foundations of Computer Science, 427–437, 1987.
[5] Y. Desmedt, S. Jajodia, “Redistributing secret shares to
new access structures and its applications”, Technical Report
ISSE TR-97-01, George Mason University, Fairfax, VA, 1997.
[6] J. Kubiatowicz, D. Bindel, P. Eaton, Y. Chen, D. Geels,
R. Gummadi, S. Rhea, W. Weimer, C. Wells, H. Weather-
spoon, and B. Zhao. “OceanStore: An architecture for global-
state persistent storage”, Proceedings of ASPLOS IX, the Intl.
Conf. on Architectural Support for Programming Languages
and Operating Systems, pp 190–201, Nov. 2000.
[7] A. Adya, W. J. Bolosky, M. Castro, G. Cermak, R.
Chaiken, J. R. Douceur, J. Howell, J. R. Lorch, M. Theimer,
and R. P. Wattenhofer. “FARSITE: Federated, Available, and
Reliable Storage for an Incompletely Trusted Environment”,
Proceedings of the 5th Symp. on Operating Systems Design
and Implementation. Dec. 2002.

