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ABSTRACT 
This paper is devoted to creation of high capacity hidden data 
storage distributed on the Internet. Offered new approach to 
construction of such systems is based on steganographic 
content sharing, controllable verification and redistribution of 
shares. The storage is designed thus to defend against three 
basic types of the adversary: passive, active and dynamic. The 
developed algorithm uses threshold sharing schemes and 
incorporates a verification capability to support redistribution 
between arbitrary sets of carrier files. It is proved that an 
adversary cannot combine old shares and new shares to 
reconstruct the steganographic content. In contrast to similar 
the offered algorithm considers specific features of 
steganography and can accommodate dynamic carrier files 
group membership changes. 
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1. INTRODUCTION 
The Internet can be considered as the most suitable 
environment for the latent storage and multi-user access to big 
volume of data, using a set of carrier files located on various 
sites [1]. The primary goal of such storage is to preserve the 
long-term flexible availability and confidentiality of data in 
the face of carrier files failures and compromises including as 
result of attacks. Thus specificity of attacks on steganographic 
systems is that not only the hidden data can be detected, but 
also carrier files can be changed, damaged or even removed 
by attacker. Another goal is to adapt to the addition or 
removal of carrier files. The purpose of this paper is to outline 
the design for distributed steganographic data storage that 
meets those goals, and present the method of reconfiguration 
that is a key component of the storage.  
 
It is usually possible to envision such storage to store data that 
is infrequently accessed, but which must remain available and 
confidential for long periods of time. In this case it is possible 
to trade off longer storage and retrieval latencies in return for 
stronger availability and confidentiality guarantees. Such 
nature of the storage allows use relatively heavyweight 
schemes for distributing the secret data to carrier files. For 
instance the steganographic content (secret data) can be 

distributed among N carrier files on base of Shamir's scheme 

[2] and it is required M (where NM  ) shares to 
reconstruct the secret data. At the same time obviously an 

adversary must detect at least M  carrier files and get from 
them hidden shares to uncover the latent secret. From the 
other hand an adversary can detect or damage at least 

1 MN  carrier files to make storage disabled [3]. In 
other words it is possible to consider two versions of 
compromising distributed steganographic data storage and 
such approach introduces a degree of fault-tolerance and 

workability of storage can remain even if MN   carrier 
files fail. Of course it is necessary to believe that there is 
enough diversity among the carrier files such that common 
security flaws and failure modes can be ruled out. 
 

2. BASIC ATTACKS AND DEFENCE 
AGAINST THEM  
The storage is designed thus to defend against three basic 
types of the adversary: 

 passive, 
 active, 
 dynamic. 

 
A passive adversary may read the carrier files but not modify 
them or cause the behavior of a carrier to damage or remove. 
To defend against passive adversary the periodic refreshments 
of the shares can be performed [3]. 
 
An active adversary corrupts data or carrier files, and may 
alter some of them. To defend against active adversaries, 
secret sharing must be verifiable as well as in case of 
cryptography [4] users should be able to verify the correctness 
of dynamic reconfiguration execution, since an active attacker 
can interfere in this process.   
 
A dynamic (or mobile) adversary compromises carrier files 
progressively, and left unchecked will eventually compromise 
enough carrier files to compromise or make storage disabled. 
To counteract dynamic adversary the full refreshment of the 
steganographic data should be executed periodically [3]. This 
scheme assumes a storage model of temporary compromise 
(i.e., compromised carrier files can be restored to a clean state 
by full refreshment), and that the adversary compromises at 

most MN   carrier files simultaneously prior to 
refreshment.   
 
The desire to defend against passive, active, and dynamic 
adversaries require a general sharing scheme in which the 
steganographic content can be redistributed dynamically to a 
new set of carrier files after the initial sharing. The new 
carrier files may form a new access structure, i.e., they may or 
may not overlap with the old carrier files, and they may or 

may not keep a proportion between N and M values.   
 
A trivial, but insecure, solution for recovering from lost or 
compromised carrier files is simply to restore the original 
steganographic content by the storage on the base of shares, 



extracted from M  undetected carriers, and again distributes 

the secret among new set of N carrier files. This solution 
suffers from an obvious weakness – if adversary can interfere 
with refreshment process the storage will appear completely 
compromised and confidential data will be lost irrevocably.  
 
More preferable can be a solution that does not involve the 
restoration of the steganographic content, in which the work 
of redistribution is performed by the remaining (non-
compromised) carrier files. The similar approach exists for 
cryptographic systems [5], but specificity of steganography is 
that in this case the most essential are the attacks connected 
with disclosing of very fact of hidden data existence. 
Presented method of verifiable dynamic reconfiguration 
considers noted specificity of steganography and generally 

replaces access structure ),( NM  with new arbitrary 

structure )','( NM . Thus essential difference is that the 

capability to verify validity of the new shares (i.e., that they 
can be used together with old noncompromised shares to 
reconstruct the original steganographic content).  It is 
necessary to stress that the ability to perform verification is 
essential for distributed steganographic systems where having 
some compromised carrier files is the common case rather 
than the exception.   
 

3. DATA STORAGE ARCHITECTURE  
The high-level view of distributed steganographic data storage 
architecture is shown on Figure 1.  
 

 
Figure 1. The high-level view of distributed steganographic 
data storage architecture 
 
Architecture consists of four main components: administrator, 
users, adversaries and a group of steganographic containers 
(carrier files), distributed on the Internet. Users perform the 
initial distribution and final reconstruction of files (i.e., 
secrets), and are considered trusted entities. Adversaries try to 
find out the fact of existence of steganographic data storage 
and if they are successful, to uncover the latent secret and to 
prevent normal functioning of storage (make it disabled). 
 
Administrator manages placing of shares on set of carrier files 

)......1( NM  and performs redistribution. Though the 

number of carrier files that implement the data storage may be 

very large, it is supposed that the number of carrier files N  
that store shares for a particular file (or set of files) is 
relatively small. Thus administrator should provide private 
point-to-point links between users and corresponding carrier 
files. Administrator requires mechanisms to keep track of the 

members of the active group of carrier files, and to determine 
when carrier files have joined or left (intentionally or through 
failure) the group. When administrator detects changes in the 
active group membership, it redistributes the shares to the 

new group of carrier files )''...'...1( NM . Administrator 

may perform redistribution an arbitrary number of times 

)""..."...1( NM  prior to reconstruction. It is supposed, 

that the rate of change of membership is low compared to the 
rate at which users contact the group for I/O operations. 
 
Users require a mechanism to locate the active group of 
carrier files for I/O operations. Users are not part of the group 
of carrier files (in contrast to peer-to-peer storage systems 
such as OceanStore [6]), and thus cannot rely on the group 
membership protocol used by the administrator. A simple 
approach would be for the user to contact a central directory 
that replies with the list of carrier files; administrator would 
update the directory after a change in group membership. Of 
course, the central directory is an obvious point of 
vulnerability in an otherwise decentralized architecture. A 
more robust approach is for the user to contact a replicated 
directory service that uses agreement protocols to ensure 
consistent and valid updates to the list of carrier files (such as 
in Farsite [7]). 
 
Users also require a heuristic to select the threshold value 

M  for given N  carrier files. User requires M  non-faulty 
carrier files to reconstruct the secret, and can tolerate at most 

1M  faulty carrier files. Thus, it is necessary, that 

NMM  1 , or 2/)1(  NM . To store a file 

in the steganographic data storage, a user locates the active 

group of N carrier files and selects the ),( NM  access 

structure to use. It then distributes N  shares of the secret to 
the carrier files and a witness to the secret to administrator 
(described in Section 4.3). When administrator detect that a 
carrier file left the group it have to join to the group another 
carrier file and redistribute shares of the secret to the new 
group. Administrator use the same heuristic as the users to 

select the new select the threshold value 'M  for 'N  carrier 
files of the new group. Administrator may redistribute the file 
an arbitrary number of times, not informing corresponding 
users. Finally, when a user needs to reconstruct the secret, it 
locates the active group of carrier files, which may differ from 
the group to which it distributed shares initially. The user then 

retrieves at least 'M  shares and reconstructs the secret. 
 

4. BASICS OF RECONFIGURATION 
4.1. Steganographic content sharing scheme 
Shamir’s ),( NM  threshold sharing scheme is based on 

polynomial interpolation [2]. To distribute secret K  to the 

access structure ),( NM  it is necessary to select an 

1M   degree polynomial )(xA  with constant term K  

and random coefficients 11 ... MAA  and use it to generate 

shares iS  for hiding in set of carrier files  )( N :  

1
1
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21 ... 
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To reconstruct K , it is necessary to retrieve M  shares iS  

form set of carrier files  )( M , and use Lagrange 

interpolation:  
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Thus it is obvious that   , otherwise it is impossible to 

restore the shared secret correctly. 
 

4.2. Redistribution of shares  
For the redistribution of shares of secret K from access 

structure ),( NM  to access structure )','( NM  

without requiring the intermediate reconstruction of the secret 

using the authorized subset   for above considered sharing 

scheme by analogy with [5] it is necessary for each i , to 

compute the subshares ijŜ  of iS on base of the polynomial 

1'
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2
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Miiiii jAjAjASjA

and send ijŜ  to the corresponding 'j . Later for each 

'j , generate a new share jS '  by Lagrange 

interpolation:  
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4.3. Verifiable secret sharing  
The application of verification approach to above considered 
sharing scheme by analogy with [4] takes advantage of the 
homomorphic properties of exponentiation and the 
assumption that the computation of discrete logs in a finite 
field is intractable.  
 

Suppose we have fields p  and r , such that p and r are 

prime and 1 pqr  (where q  is a non-negative integer), 

and suppose we have an element rg   of order p . Then, 

suppose we use above considered sharing scheme with 

polynomial )(xA  to distribute a secret pK   to the 

access structure ),( NM . In addition to sending the shares 

piS   to i carrier files, we broadcast witnesses to K  

and the coefficients 11 ... MAA  of )(xA in the form of 

Kg  and 11 ... MAA gg . For each carrier file it is possible 

to verify that iS  is a valid share of K by equation:  

1
1

2
21 )(...)()(




M
Mi iAiAiAKS ggggg          (4) 

which is the exponentiation of )(xA . Since it is assumed 

that the computation of discrete logs is intractable, no-one can 

calculate K  or 11 ... MAA  from the broadcast of the 

witnesses.    
 

 

5. VERIFIABLE CONTENT 

REDISTRIBUTION ALGORITHM 
Suggested verifiable steganographic content (secret data) 
redistribution algorithm is based on above considered three 
basic approaches – data sharing, redistribution and 

verification. The algorithm takes as input shares of a 
steganographic content distributed to the access structure 

),( NM , and outputs shares redistributed to the access 

structure )','( NM . It is assumed that the computation of 

discrete logs in a finite field is intractable, and that there exist 
reliable broadcast and private channels among all users and 

administrator.  It is also assumed that there are at least M  

non-faulty old carrier files, that there are at most 1M  

faulty old carrier files, and that there are 'N  non-faulty new 
carrier files.  
 
The initial distribution of steganographic content proceeds as 
in verifiable secret sharing scheme (Section 4.3). The user 

distributes the secret K to N carrier files so, that each i  

share is defined by the polynomial )(iA . The user also 

broadcasts 
Kg  and 11 ... MAA gg , which each i  uses in 

Equation (4) to verify the validity of iS . If Equation (5) 

holds, administrator stores iS  in carrier file i  and 

corresponding witnesses in special table. 
 
Reconfiguration of the distributed steganographic data storage 
proceeds as in inedistribution of shares scheme (Section 4.2). 

For each carrier file i  from an authorized subset    

administrator uses Shamir’s scheme (with the polynomial 

)(' jA i ) to distribute subshares ijŜ  of its share iS  to 

access structure )','( NM . Administrator may 

redistribute K  an arbitrary number of times before 
user reconstruct it. 
 
For the new carrier files to verify that their shares of the 
secret are valid after redistribution, it is required that 
two conditions hold. When for all i  

iS redistributed to each 'j , all jS ' are valid shares 

of K  if hold conditions of Equation (2) and Equation (3) 

for '  of access structure )','( NM . That is:  
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For the new shares jS '  the condition of validity follows 

from Equation (3) for a secret K  distributed to access 

structure )','( NM  .  That is: 
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In this case administrator has to contact corresponding users 
to update table of witnesses. It is necessary to allow users to 
verify of shares from the new carrier files. In table of 

witnesses for each i must therefore be stored 
Kg . Each 

user can receives iS  from each carrier file to verify that 

subshares holds the conditions and can receives witnesses 

from the table (including 
Kg ) to verify that iS  is a valid 

share of K by: 





i

SbK iigg ,   where 
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        (7) 

Equation (7) follows from Equation (2) and the homomorphic 
properties of exponentiation. Since it is assumed that the 
computation of discrete logs is intractable, no-one can 

calculate K  from the broadcast of Kg . 
 

6. SUMMARY 
The offered new approach to construction of steganographic 
systems allows creating high capacity hidden data storage 
distributed on the Internet. It is based on simultaneous use of 
three basic methods – steganographic content sharing, 
controllable verification and redistribution of shares. The 
nature of such systems itself calls for heavyweight protection 
mechanisms to ensure the long-term availability and 
confidentiality of stored data. Additionally, it is necessary to 
account for the addition and removal of steganographic carrier 
files within the lifetime of the data. The storage is designed 
thus to defend against three basic types of the adversary: 
passive, active and dynamic. The developed algorithm uses 
threshold sharing schemes and incorporates a verification 
capability to support redistribution between arbitrary sets of 
carrier files.  
 
The analysis of vulnerabilitys of similar cryptographic 
algorithms has allowed showing that two conditions (shares 
validity and subshares validity) are sufficient to guarantee that 
new carrier files have valid shares after redistribution. It is 
also proved that an adversary cannot combine old shares and 
new shares to reconstruct the steganographic content, 

provided that the adversary has less than M  old shares and 

'M  new shares. The developed redistribution algorithm can 

tolerate up to 1M  faulty old carrier files (provided that 

there are at least M  honest members). It is pointed out that 
the identification and replacement of faulty members of 
carrier files active group is not immediately possible if the 
new members must rely on the old carrier files to distribute 
verification information. It can be shown, that at worst case 
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 restarts are required to eliminate 

faulty carrier files and complete the algorithm.  
 
In contrast to similar the offered algorithm considers specific 
features of steganography and can accommodate dynamic 
carrier files group membership changes. The important 
feature of algorithm is possibility to guard against mobile 
(dynamic) adversaries with permanent compromise. That is, it 
is possible to deal with compromise that cannot be recovered 
with a reboot operation. Of course it is still required that at 
any given point of time, the number of faulty carrier files in 
the active group of containers is less than the threshold value. 
 

For the further development of the offered approach to 
construction of high capacity distributed steganographic 
systems and its finishing to practical realisation it is necessary 
to study in details the nature of steganographic carrier files 
failures in a consequence to the "natural" reasons and as a 
result of adversary’s purposeful influence. Besides it would be 
useful to have a real estimation of complexity of algorithm for 
the conditions representing practical interest. Also it would be 
necessary to present the strict proof of a correctness and 
security of the offered approach. 
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