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ABSTRACT
Estimation of efficiency of the public key cryptosystem based
on Boolean product of matrices is given. It is shown that
the high performance of the cryptosystem is conditioned by
the use of fast logic operations. The stability of the cryp-
tosystem is based on the computational complexity of de-
composing Boolean product and Boolean addition of large
matrices. Ease of implementation of the cryptosystem based
on Boolean product of matrices is also investigated.

Keywords
Boolean matrix, product of matrices, public key, private key.

1. INTRODUCTION
Most of the existing public key cryptosystems are based on
the number theory, providing high stability against attacks
by using a large key space [1]. Implementation of such algo-
rithms leads to selection of primes from a sufficiently large
set, meanwhile at present, there are no useful techniques to
yield arbitrary large primes, and also almost invariably, the
tests for primality are still probabilistic. Both key genera-
tion and encryption/decryption involve raising an integer to
an integer power then reducing modulo n dealing with po-
tentially large exponents and complex calculations, which
significantly decreases the level of the cryptosystem perfor-
mance, especially with procession of large amount of infor-
mation. The larger size of the key, the slower the system will
run. This keeps the number theory based public key cryp-
tosystems currently confined to key distribution and signa-
ture applications. To improve the performance of public key
cryptosystems and to eliminate the restrictions of their ap-
plications, cryptosystems based on mathematical logic are
being developed. In particular, the public key cryptosystem
based on the Boolean product of matrices can serve as a
premise to construct fast and stable public key cryptosys-
tems providing also easiness of implementation. Boolean
product of matrices involves usage of so called zero-one ma-
trices, with entries either zero or one. Zero - one matrices are
often used to represent discrete structures such as functions
and binary relations. Algorithms using these structures are
based on Boolean arithmetic with zero-one matrices, im-
plementing logical multiplication called as conjunction, and
addition of two types, such as disjunction and exclusive OR
operation. Any algorithm applying logical operations pos-
sesses high level of performance, therefore, usage of Boolean

logic can result in a general purpose cryptosystem due to
ease of its realization. In this paper detailed exploration
of essential features of the cryptosystem based on Boolean
product of matrices is represented.

2. KEY PAIR GENERATION IN THE PUB-
LIC KEY CRYPTOSYSTEM BASED ON
BOOLEAN PRODUCT OF MATRICES

In this cryptosystem the plaintext and ciphertext symbols
are integers between 0 and 2n−1. Any integer between 0
and 2n−1 can be expressed as a binary number consisting
of n bits with padded starting 0-s if needed. It is known
that a Boolean function of n variables is a mapping from an
n-dimensional vector space over the binary field F2 = {0, 1}
to itself. Such a function can be implemented as a combina-
tional logic unit with one bit output and n -bit input [2]. A
mapping from F n

2 to F m
2 is called an (n, m) Boolean func-

tion. An (n, m) Boolean function can always be expressed
as a collection of m functions in Fn, where Fn is the set of
all Boolean functions over n variables. A particular class
of these type of multiple output Boolean functions occur
when m = n and that different inputs yield different out-
puts. By treating each input/output as the binary expres-
sion of an integer within the range S = {0, 1, ..., 2n−1}, the
above functions perform permutations on S and are called
Boolean permutations [3]. Key pair generation starts with
the creation of such a collection of Boolean functions over
n variables called as initial Boolean permutation, BP , of
order n

BP = [f1(x), f2(x), , fn(x)]. (1)

Here f1, f2, ..., fn are component functions of the initial
Boolean permutation BP , and x is the shorthand of all the
variables. Like any permutation, the initial permutation
BP has own inverse. The initial permutation and its inverse
are defined by tables, as shown in Table 1 and Table 2,
respectively.

Table 1. Permutation table for BP

n-bit binary Initial BP
representation of integers f1 f2 f3 ...fn

000....0 0 0 0 ...1
000....1 1 0 1 ...0
000...10 0 1 1 ...1

... ... ... ... ...

... ... ... ... ...

... ... ... ... ...
111...10 1 0 1 ...0
111...11 1 1 0 ...1

The input to a table consists of n bits numbered from 0 to



2n−1. Notice that the initial Boolean permutation BP has
no cryptographic value and actually represents a bijective
encoding scheme available to any user applying this cryp-
tosystem.

Table 2. Permutation table for BP−1

BP−1 x1 x2 x3 ...xn

000....1 0 0 0 ...0
101....0 0 0 1 ...1
011....1 0 1 0 ...0

... ... ... ... ...

... ... ... ... ...

... ... ... ... ...
101....0 1 0 1 ...0
110....1 1 1 1 ...1

Key pair generation of the proposed public key cryptosystem
involves the following steps:

1. An initial Boolean permutation of order n over k variables
is constructed, then its transpose is taken. This results in a
matrix of size k × n. Denote it by BM1.

2. For the matrix BM1 two more matrices, BM2 and BM3

are created. They have property, that

BM1 ×BM2 = Ik, (2)

BM3 ×BM2 = 0. (3)

Here Ik is the identity matrix of size k×k. A convenient way
to create such matrices is to choose an arbitrary nonsingular
matrix M of size n×n such that its first k rows are occupied
by BM1, the remaining n−k rows represent BM3, and BM2

will be composed by the first left k columns of M−1, which
is the inverse of M [2].

3. Another arbitrary collection of Boolean functions, the
second Boolean permutation, is created, as follows:

R = [r1, r2, ... rn−k] (4)

4. A secret Boolean matrix, BMS , of size k× k is created.

5. R×BM3 ⊕BMS is calculated. Denote it by BM4.

The public key of the proposed public key cryptosystem is
the pair of only two matrices, (BM1, BM4).

The private key of this cryptosystem is the triple of Boolean
matrices (BM2, BMS, BP−1).

3. MESSAGE ENCRYPTION/DECRYPTION
The plaintext, that is a collection of integers between 0 and
2n−1 converted into binary, is processed according to trans-
formations, indicated above. That is, the plaintext symbols
binary values are replaced with the initial Boolean permuta-
tion component functions values, resulting in BM1 and then
XOR-ed with BM4, which is a puzzled composition of R,
BM3 and BMS. The encryption is performed according to
the following algorithm:

C = (BP ×BM1)⊕BM4, (5)

where C is the ciphertext.

To decrypt the ciphertext, BMS is removed from the en-
cryption matrix through XOR-ing operation, and the initial

permutation BP is released through the following operation:

PB = CPK ×BM2, (6)

where CPK is the ciphertext obtained by applying the public
key, PK, over the plaintext.

Detailed exploration of stability of the presented algorithm
is given in [4]. The cryptosystem security is analyzed against
the following main types of attacks:

• probable-message attack

• algebraic attack

• the private key exhaustive search attack

• attack by computing the private key from the given
public key.

The analysis given in [4] shows that it is accomplished so
that the degree of security is great enough to delay solution
by the opponent for such a length of time that when the
solution is finally reached, the information thus obtained
has lost its value.

4. COMPUTATIONAL ASPECTS
We now turn to the issue of the complexity of the computa-
tion required to use Boolean product of matrices, (BPM).
There are actually two issues to consider: key generation and
encryption/decryption. Before the application of BPM , a
pair of keys must be generated. For public key generation
this involves the following tasks:

1. Clarifying the range of positive integers used to cover
the plaintext characters and find the number of bits,
k, required to represent them in binary.

2. Constructing the appropriate truth table mapping the
binary patterns into functions values. The number of
rows of that table is n.

3. Creating the transpose of the resulting matrix with
the functions values of size n × k. This is the initial
permutation, BP .

4. Constructing an n×n matrix, M , such a way to satisfy
the conditions (3)and (4).

5. Creating another arbitrary permutation, R.

6. Constructing BMS.

7. Calculating BM4.

First consider the performance of the point 4, as the first
three points are procedures consuming no time and calcula-
tions. The same holds with point 5 and 6. Now it is time to
estimate the generation of matrices BM1, BM2 and BM3.

Matrices BM1 and BM3 are occupying k and n − k rows
of the matrix M and their generation does not require any
technique. Concerned with the matrix BM2 generation, re-
call that it is composed from k left columns of the matrix
M−1. Finding M−1 is known to be non NP problem.

Now we proceed with calculation of the number of bit op-
erations used to find the Boolean product of two matrices.
Considering the worst case in such calculation, when two
matrices both of size n are multiplied. Note that the Boolean



product of A and B matrices is obtained in analogous way
to the ordinary product of those matrices, but with addi-
tion replaced with the operation ∨ and with multiplication
replaced with the operation ∧. There are n2 entries in both
matrices A and B. Total n ORs and n ANDs are used to
find an entry of A×B matrix. Hence, 2n bit operations are
used to find each entry. Therefore, 2n3 bit operations are
required to compute A×B.

As the XOR combination of two matrices of size n × n is
carried out in n2 steps, the calculation of BM4 will take
2n3 + n2 bit operations.

The private key generation computational cost is the follow-
ing:

• Constructing the BMS, that is not a calculation con-
suming operation.

• Calculating the inverse Boolean permutation, BP−1,
with n number of terms, which involves n bit opera-
tions

• Determining BM2 from the matrix M of size n × n
taking total k× n bit operation, as BM2 occupies the
left k columns of M .

Encryption and Decryption. Encryption involves two
Boolean matrices multiplication and one XOR operation to
obtain ciphertext. As it was shown above, this will take, at
worst, 2n3 + n2 bit operations. Decryption involves a XOR
operation to remove BMS from the ciphertext item matrix,
another Boolean product and, finally, inversion of the initial
Boolean permutation, BP−1. Therefore, 2n3 + n2 + n bit
operations are required to decrypt a plaintext symbol.

Thus, we have shown, that in the presented public key cryp-
tosystem both key pair generation and encryption/decryption
are polynomial time calculations.

5. CONCLUSION
The presented public key cryptosystem possesses high level
of performance due to the usage of only logic operations.
Through trivial modifications the cryptosystem can be ap-
plied for key exchange and digital signatures purposes as
well. One can design hash functions based on Boolean prod-
uct of matrices as well as with existing methods, reducing
the size of initial matrices to an offered final key length pro-
viding non reversibility of the procedure.

The security of the BPM cryptosystem is based on the com-
putational complexity of decomposing the Boolean product
of large matrices.

The decomposition of the Boolean product of matrices is
analogous to integer factorization problem with an impor-
tant distinguishing feature: unlike the existing cryptosys-
tems, where large numbers are used as products of primes
and these products are independent of the component mul-
tipliers order relation, the order relation of the component
matrices in their product is substantial as Boolean product
of matrices is not commutative.

The above analysis shows the efficiency of construction of
public key cryptosystems based on Boolean product of ma-
trices, which can significantly enlarge the application frame
of public key cryptosystems.
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