
Abstract— Non-linear prediction models have shown good 

performance in reflection of uncertainties and complexities in real 

world problems of decision making. Extending the predictor 

variables of predictions is the challenging and difficult task of 

prediction. In this paper, we investigate the problem of selecting non-

contiguous input variables for usual prediction models in order to 

improve the prediction ability. In this paper, we discuss an Entropy-

Based Approach to Time Series Analysis. The basic concept of 

entropy in information theory has to do with how much randomness 

in a signal or in a random event. In probability theory and 

information theory, and Statistics, a quantity called Relative entropy 

is often used to assess information content. We successfully test 

proposed algorithm with a chaotic time series by selecting in-puts on 

K.U.Leuven data set. 
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I. INTRODUCTION 

EATURE subset selection plays an important role in 

analysis of many problems of Time series prediction 

encountered in science and technology, for instance in 

climatology [1], and economics [2]. The objectives of variable 

selection is to improve the prediction performance of the 

predictors, to provide faster and more cost effective predictors, 

and to provide a better understanding of the underlying 

process that generated the data. Some of the independent 

variables may not contribute at all to the model. Thus we have 

to select from these variables to obtain a model which contains 

as little variables as possible while still being the "best" 

model. In principle, all possible combinations of independent 

variables should be tried for calculating a suitable model. This 

could turn out to be a formidable task, even if high 

performance computers are available. Important discussion 

would be about “criterion”, since that a simple criterion, like 

the goodness of fit, r
2
, may lead to wrong conclusions if the 

number of selected variables approaches the number of 

observations.  

In this study, we discuss an Entropy-Based Approach to 

Time Series Analysis. The basic concept of entropy [4], [8], 

[9] in information theory [5] has to do with how much 

randomness in a signal or in a random event. In probability 

theory and information theory, and statistics, a quantity called 

the Kullback-Leibler (KL) divergence or Relative entropy is 

often used to assess information content [3], [6], [7]. In other 

word the Kullback-Leibler divergence, or relative entropy, is a 

quantity which measures the difference between two 

probability distributions and often referred to as the 

discrimination gain. As mathematic point view KL is a 

measure of the distance between two probability density 

functions. In this paper, we use Kullback-Leibler Information 

Criterion to find desired variables. The new estimated 

distribution is chosen to be as close as possible to the original 

in the sense of minimizing the associated Kullback-Leibler 

Information Criterion, or relative entropy. 

We utilize an algorithm for input variable selection in the 

spirit of stepwise selection, in which variables are 

progressively removed from the prediction model and, which 

variables are added to the prediction model. The removal and 

additional of variables is based on a median and a standard 

deviation of parameter distributions sampled with an entropy 

based approach. These statistics reflect the uncertainty for a 

variable to play an important role in the prediction task.  

We apply the algorithm in a prediction setting, where input 

selection is performed for different one-step-ahead prediction 

models. Finally results used in the prediction of a prominent 

chaotic benchmark, K.U.Leuven time series data generated for 

an international competition on Advanced Black-Box 

Techniques for Nonlinear Modeling, held at the K.U.Leuven 

Belgium. 

 

II. VARIABLE SELECTION: STEPWISE ALGORITHM 

Stepwise selection is a method to find the "best" 

combination of variables by starting with a single variable, 

and alternative adding and eliminating the variables, step by 

step. Which variables to add or eliminate is decided according 

to desire criteria.   

The method is started by first selecting the variable which 

results in the best fit for the dependent variable Y. Next, this 
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variable is used to test all combinations with the remaining 

variables in order to find the "best" pair of variables. All 

variables are tested if their contribution is significant after a 

new variable has been added. This may lead to the elimination 

of an already selected variable if this variable has become 

superfluous because of its relationship to the other variables.  

In all further steps, additional variables are added until either 

all variables are used up, or some stopping criterion is met (i.e. 

the criteria below a certain limit). The algorithm could be 

shown in these steps:   

  

1) Calculate the partial correlations of all predictor variables, 

Xi, with the response variable Y. Use the variable with the 

highest partial correlation as the starting variable.  

2) Add the variable with the highest criteria value. 

3) Check all variables of the current model for their criteria 

values and remove any variable which falls below a 

predefined threshold. 

4) Repeat the procedure with step 2 until some stopping 

criterion is met. 

 

III. RELATIVE ENTROPY: KULLBACK-LEIBLER 

INFORMATION CERITERION  

A. Information Entropy 

Entropy is a concept in thermodynamics, statistical 

mechanics and information theory. The concepts of 

information and entropy have deep links with one another, 

although it took many years for the development of the 

theories of statistical mechanics and information theory to 

make this apparent. 

In information theory, the Shannon entropy or information 

entropy is a measure of the uncertainty associated with a 

random variable. The concept was introduced by Claude E. 

Shannon in his 1948 paper "A Mathematical Theory of 

Communication" [10]. 

In physics, the word entropy has important physical 

implications as the amount of "disorder" of a system. In 

mathematics, a more abstract definition is used. Shannon 

defined a measure of entropy: 
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bits, where P(x) is the probability that X is in the state x, and 

Plog2P is defined as 0 if P=0. The joint entropy of variables 

X1,..., X2 is then defined by  
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B. Cross Entropy 

In information theory, the cross entropy between two 

probability distributions measures the overall difference 

between the two distributions. Cross entropy is closely related 

to Kullback-Leibler divergence (which is also known as the 

relative entropy). The cross entropy for two distributions p 

and q over the same probability space is defined for discrete p 

and q this means as follows: 
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The situation for continuous distributions is analogous: 
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C. Relative Entropy: Kullback-Leibler Divergence  

In probability theory and information theory, the Kullback-

Leibler divergence, or relative entropy, is a quantity which 

measures the difference between two probability distributions. 

It is named after Solomon Kullback and Richard Leibler, two 

NSA (National Security Agency) mathematicians [11]. The 

term "divergence" is a misnomer; it is not the same as 

divergence in calculus. One might be tempted to call it a 

"distance metric", but this would also be a misnomer as the 

Kullback-Leibler divergence is not symmetric and does not 

satisfy the triangle inequality. 

The Kullback-Leibler divergence between two probability 

distributions p and q is defined as 
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for distributions of a discrete variable, and as 
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for distributions of a continuous variable. 

It can be seen from the definition that 
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denoting by H(p,q) the cross entropy of p and q, and by 

H(p) the entropy of p. As the cross entropy is always greater 

than or equal to the entropy, this shows that the Kullback-

Leibler divergence is nonnegative, and furthermore KL(p,q) is 

zero iff p = q. 

Although KL(p,q) ≠ KL(q,p), so relative entropy is therefore 

not a true metric, it satisfies many important mathematical 

properties. For example, it is a convex function of p. 

 

IV. K.U. LEUVEN TIME SERIES DATA 

Within the framework of the International Workshop on 

Advanced Black-Box Techniques for Nonlinear Modeling, 

held at the K.U.Leuven Belgium July 8-10 1998, a new time 

series competition had been organized. The data are generated 

from a computer simulated 5-scroll attractor, resulting from a 



generalized Chuas circuit, Fig.1. Chuas circuit is well known 

to be a paradigm for chaos [12, 13] being a simple nonlinear 

electrical circuit that reveals a rich variety of phenomena. The 

generalized Chuas circuit consists of nonlinearity with 

multiple breakpoints, leading to a family of n-scroll attractors 

[14, 15]. 

 

 
Fig.1. Computer simulated 5-scroll attractor from which the competition data 

have been generated. 

 

 

The data were generated from the following computer 

simulated generalized Chua's circuit ([15], [16]): 

 

 
 

with piecewise linear characteristic 
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with parameters α= 9, β= 14:286 and for the vectors 

m = [m0;m1; :::;m2q-1], c = [c1; c2; ::: ; c2q-1] one takes 
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The generalized Chua's circuit has been simulated for initial 

state [0:1; 0:2; 0:3] with a Runge-Kutta integration rule 

(ode23 in Matlab). The competition data have been obtained 

then by taking a nonlinear combination of the 3 state 

variables: 

 

)tanh( VxWy =  
 

where x = [x1; x2; x3] is the 3-dimensional state vector and 

the nonlinearity is a multilayer perceptron with 3 hidden units, 

interconnection matrices 

 

[ 0.0124 0.3267 1.2288]W = −  

0.1004 0.1102 0.2784

0.0009 0.0792 0.6892

0.1063 0.0042 0.0943

V

− − − 
 

=  
 − 

 

 

 

and a zero bias vector. This multilayer perceptron is hiding 

the underlying structure of the attractor. The resulting time 

series is 2000 data points we have used, Fig.2.  

 

 
Fig.2. 2000 given data points 

 

V. NONLINEAR MODEL AND VARIABLE SELECTION  

Based on the results from the previous section, we train a 

non-linear model. Here, we have used a multi layer perceptron 

(MLP) network. The network is trained using optimization 

method by back propagating the error gradients. A partial 

correlation calculation is shown in Fig.3. The selected number 

of initial variables could be between 60 pervious values in 

time series.  

 

 
                    Fig.3. Partial correlation calculation for K.U.Leuven data set 

 

 

Input selection algorithm has been used to yield input 

variables. Fig.4 presents an example of input selection in the 

case of one-step-ahead prediction. In this case, algorithm 

selected the model with 4 inputs. Numerical results for best 



cases in final population are shown in Table1. Fig.5 and Fig.6 

show resulted variable according to both minimum KLIC and 

RMSE criterion.   
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Fig.4. Input selection, Kullback-Leibler Entropy Criterion, the final model is 

chosen to be the least complex model 4 inputs. 

 

 
TABLE1. SELECTED INPUTS FOR BEST MODELS ACCORDING TO THE MINIMUM 

KLIC AND THE CORRELATION COEFFICIENT AND ROOT MEAN SQUARE 

ERROR  

Input variables 
RMSE of 

prediction 

Correlation 

  criterion  
KL criterion  

(1,2,3) 0.005362 0.99959 5.22E-05 

(1,2,3,8) 0.005155 0.99961 4.12E-05 

(1,2,4) 0.008254 0.99931 2.22 E-04 

(1,2,4,8) 0.004688 0.99967 7.91E-05 
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Fig.5. Selected inputs for best models according to the minimum KLIC 
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Fig.6. Selected inputs for best models according to the minimum RMSE 

VI. CONCLUSION 

The proposed algorithm selected parsimonious sets of 

inputs for all prediction models. The Structure built using the 

corresponding inputs led to good prediction performance. The 

main advantage of the proposed approach is that it combines 

fast input selection with accurate but computationally 

demanding non-linear prediction. 
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