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ABSTRACT
An authentication algorithm for binary vectors generated
by a source having an unknown structure is described and
applied to the problem of automatic characterization of doc-
uments.

1. INTRODUCTION
Automatic categorization is necessary to maintain large
amounts of documents. However, its implementation is an
extremely difficult task due to huge amount of data, vast
number of different categories, and inherent difficulty of the
categorization problem, which may confuse even a human
expert. Furthermore, the set of categories is not fixed be-
forehand, and sometimes their meanings change. Neverthe-
less, one needs an automatic tool, which is able to classify
an document as belonging to one of categories, specified by
a pre–classified set of documents.

The first step of any automatic categorization algorithm is a
transformation of the document being classified to a vector
of features. Each category can be considered as a source
with some multi-dimensional distribution over the space of
feature vectors. The classifier has to decided if a particular
feature vector is likely to be drawn from a given source or
not. Similar problem is known as the biometrical authenti-
cation problem where the verifier has to check whether the
presented vector is a reaction of the neuron system to a fixed
stimulus, which is specified by records of the reactions to
that stimulus received at the enrollment stage. Therefore,
the algorithms that bring good results for the biometrical
authentication can be considered as candidates for the text
categorization as well. In the present correspondence, we
propose the implementation of a special version of the BAr
(Bernoulli Approximation) authentication scheme developed
for spikes analysis [1].

2. AUTHENTICATION ON THE BASIS OF
PAIRWISE COMPARISONS

2.1 Basic ideas
Suppose that there are L binary vectors of length n denoted
by x` = (x`,1, . . . , x`,n), ` = 1, . . . , L, characterizing the
behavior of a complex system.

“Extracting the knowledge about the source” is understood
as a formal description of an authentication procedure:
given a binary vector y of length n, the authentication
scheme has to decide whether this vector is generated by

the same source as the vectors x1, . . . ,xL or not. The error
events, called the false acceptance and the false rejection, are
possible in this case. The false acceptance event means that
the vector generated by a different source received the posi-
tive answer. The false rejection event means that the vector
generated by the fixed source received the negative answer.
In signal detection theory, one tries to minimize the prob-
abilities of both error events. The main difficulty with the
setup describing complex systems is a proper introduction of
the notion of “the probability” in a sense that processing of
probabilities should reflect the requests. Nevertheless, with-
out any formal introduction, we can notice that the quality
of the data processing scheme can be measured by using
the following experiments: (1) if the authentication is run L
times when the given vectors x1, . . . ,xL are substituted for
the vector y, then the most of the answers should be posi-
tive; (2) if randomly chosen vectors are substituted for the
vector y, then the most of the answers should be negative.

Let the verifier be given L binary vectors x1, . . . ,xL of
length n generated by some source. He is also given an-
other binary vector y of length n. The verifier makes either
the acceptance decision (Y), which means that the vector y
is generated by the same source as the vectors x1, . . . ,xL,
or the rejection decision (N), which means that this is not
true.

The basic idea of our approach is the introduction of an

auxiliary source generating pairs of binary vectors of length

n. The general description of the data processing scheme
can be presented as follows:

– replace the given vectors x1, . . . ,xL with the sequence

consisting of L2 pairs of vectors (x`,x`′), `, `′ =
1, . . . , L;

– given a vector y, form the sequence consisting of L
pairs of vectors (x`,y), ` = 1, . . . , L;

– compare statistical properties of two sequences.

As the model for the source generating the vectors
x1, . . . ,xL is not defined, “statistical properties” men-
tioned above are understood in such a way that the accep-
tance/rejection decision is made by using the probabilities
assigned to 22n pairs of vectors (x,x′). As we have access
only to L2 pairs, which is much less than 22n, the rules for
assigning these probabilities have to be postulated. Let us
denote the probability associated with the pair (x,x′) by
Ω(x,x′) and let

Ω = (Ω(x, x′),x,x′ ∈ {0, 1}n )



denote the desired probability distribution. The following
requirements have to be taken into account while specifying
Ω:

(R1) the probability distribution Ω has to be symmetric,
i.e., Ω(x,x′) = Ω(x′,x) for all x,x′ ∈ {0, 1}n;

(R2) the length of description of Ω has to be small;

(R3) the probabilities Ω(x, x′) are large enough when
x,x′ ∈ {x1, . . . ,xL}.

The simplest algorithm for assigning the probability to any
pair of binary vectors (x,x′) is the non–stationary memory-
less distribution when

Ω(x,x′) =

n
Y

t=1

ωt(xt, x
′

t). (1)

Then the probability distribution Ω is specified by the 2× 2
matrices

Ωt =

»

ωt(0, 0) ωt(1, 0)
ωt(1, 0) ωt(1, 1)

–

such that


ωt(0, 0), ωt(1, 0), ωt(1, 0), ωt(1, 1) ≥ 0
ωt(0, 0) + ωt(1, 0) + ωt(1, 0) + ωt(1, 1) = 1.

We also denote

Λt
4

=

»

− log ωt(0, 0) − log ωt(0, 1)
− log ωt(1, 0) − log ωt(1, 1)

–

. (2)

Notice that, by the symmetric requirement,

ωt(0, 1) = ωt(1, 0) = (1 − ωt(0, 0) − ωt(1, 1))/2 (3)

and

Ω(x,x′) =
n

Y

t=1

8

<

:

ωt(0, 0), if xt = x′

t = 0,
(1 − ωt(0, 0) − ωt(1, 1))/2, if xt 6= x′

t,
ωt(1, 1), if xt = x′

t = 1

(4)
for all pairs of binary vectors (x,x′).

If (4) holds, then the (R1)–(R2) requirements are satisfied,
since the probability distribution Ω is symmetric and it is
specified by 2n numbers ωt(0, 0), ωt(1, 1), t = 1, . . . , n. The
(R3) requirement can be presented as assignment a measure
to the given matrix X where all the data contribute to the
obtained value and this value “has to be large”. We have the
geometric average and the arithmetic average of the entries
Ω(x`,x`′) as candidates for such a measure and formalize
the (R3) requirement as follows:

– assign the numbers ωt(0, 0), ωt(1, 1), t = 1, . . . , n, in

such a way that

“

L
Y

`,`′=1

Ω(x`, x`′)
”1/L2

→ max (5)

or, equivalently,

1

L2

L
X

`,`′=1

Λ(x`, x`′) → min, (6)

where

Λ(x`,x`′ )
4

= − log Ω(x`,x`′ ). (7)

Notice that the product at the left–hand side is the geomet-
ric average of the entries Ω(x`,x`′), `, `′ = 1, . . . , L, which
is also a lower bound on the arithmetic average,

1

L2

L
X

`,`′=1

Ω(x`,x`′) ≥
“

L
Y

`,`′=1

Ω(x`,x`′)
”1/L2

.

Proposition. Let

γt =
1

L

˛

˛

˛

n

` ∈ {1, . . . , L} : x`,t = 1
o˛

˛

˛
(8)

denote the relative number of 1’s in the t-th column of the

matrix X. If the entries of the probability distribution Ω are

defined by (4), then the product in (5) is maximized when

Ωt =

»

(1 − γt)
2 (1 − γt)γt

γt(1 − γt) γ2
t

–

, t = 1, . . . , n. (9)

Furthermore, for the optimum assignment,

1

L2

L
X

`,`′=1

Λ(x`, x`′) = 2
n

X

t=1

h(γt), (10)

where

h(z) = −z log z − (1 − z) log(1 − z), z ∈ (0, 1),

is the binary entropy function.

2.2 Description of the authentication algo-
rithm

Our algorithm can be fixed as a procedure consisting of two
steps, called the preprocessing and the authentication.

Preprocessing.

– Compute γ1, . . . , γn defined by (5).

– For all `, `′ = 1, . . . , L, compute the probability

Ω(x`, x`′) defined by (4) for (x,x′) = (x`,x`′ ).

– Define Λα ≥ 0 as the minimum number satisfying the

inequality 2−Λα ≤ Ω(x`,x`′) for αL2 pairs (`, `′) ∈
{1, . . . , L}2, i.e.,

1

L2

˛

˛

˛

n

(`, `′) ∈ {1, . . . , L}2 : Ω(x`, x`′) ≥ 2−Λα

o˛

˛

˛
= α

(11)
or, equivalently,

1

L2

˛

˛

˛

n

(`, `′) ∈ {1, . . . , L}2 : Λ(x`,x`′) ≤ Λα

o˛

˛

˛
= α.

(12)

Authentication.

– Given a binary vector y, compute the probabilities

Ω(ε)(x`,y), ` = 1, . . . , L, defined in (2).

– Find the relative number of rows of the matrix X such

that Ω(ε)(x`,y) ≥ 2−Λα and denote it by

α(ε)(y)
4

=
1

L

˛

˛

˛

n

` ∈ {1, . . . , L} : Ω(ε)(x`,y) ≥ 2−Λα

o˛

˛

˛
.

– Accept the claim that the vector y is generated by the

same source, as rows of the matrix X, if and only if

α(ε)(y) ≥ α.



2.3 Numerical illustration
Suppose that L = 5, n = 6, and

X =

2

6

6

6

4

0 0 1 1 1 0
0 0 1 0 1 1
1 0 1 0 0 0
0 1 0 0 1 1
0 0 0 1 1 1

3

7

7

7

5

. (13)

The computation of the ratios of the Hamming weights of
the columns by L brings the following vector:

(γ1, . . . , γ5) = (0.2, 0.2, 0.6, 0.4, 0.8, 0.6).

Thus, by (9),

Ω1 = Ω2 =

»

0.64 0.16
0.16 0.04

–

,

Ω4 =

»

0.36 0.24
0.24 0.16

–

,

Ω3 = Ω6 =

»

0.16 0.24
0.24 0.36

–

,

Ω5 =

»

0.04 0.16
0.16 0.64

–

and

Λ1 = Λ2 =

»

0.6 2.6
2.6 4.6

–

,

Λ4 =

»

1.5 2.1
2.1 2.6

–

,

Λ3 = Λ6 =

»

2.6 2.1
2.1 1.5

–

,

Λ5 =

»

4.6 2.6
2.6 0.6

–

.

Let Λ denote the L × L matrix whose (`, `′) entry is equal
to Λ(x`,x`′), where `, `′ = 1, . . . , L. Then

Λ =

2

6

6

6

4

8.7 7.5 12.1 10.1 8.7
7.5 6.4 10.9 8.9 7.5
12.1 10.9 15.5 13.5 12.1
10.1 8.9 13.5 11.5 10.1
8.7 7.5 12.1 10.1 8.7

3

7

7

7

5

.

For example,

Λ(x1,x2) = 0.6 + 0.6 + 1.5 + 2.1 + 0.6 + 2.1 = 7.5.

As

(h(γ1), . . . , h(γ5)) = (0.72, 0.72, 0.97, 0.97, 0.72, 0.97),

the ratio of the sum of entries of the matrix Λ and L2 = 25
is equal to

2(0.72 + 0.72 + 0.97 + 0.97 + 0.72 + 0.97) = 10.16,

as it follows from (10).

Suppose that α = 0.44, i.e., the threshold Λα has to be
determined as the minimum number such that there are
αL2 = 0.44 · 25 = 11 entries of the matrix Λ, which are
not greater than Λα. Then Λα = 8.9, and the matrix Λ is
rewriteen below, where we show these entries in the bold
font,

Λ =

2

6

6

6

4

8.7 7.5 12.1 10.1 8.7
7.5 6.4 10.9 8.9 7.5
12.1 10.9 15.5 13.5 12.1
10.1 8.9 13.5 11.5 10.1
8.7 7.5 12.1 10.1 8.7

3

7

7

7

5

.

Some examples of the authentication with this value of the
threshold are given in Table 1.

3. APPLICATION TO THE CATEGORIZA-
TION OF DOCUMENTS

In applied the authentication algorithm to categorize docu-
ments belonging to the Reuters-21578 test collection. The
supervised learning scenario assumes that one is provided
with a training set. Each document in the training set is
manually assigned to zero or more categories. The first step
of classifier training is construction of a vocabulary for each
category. The vocabulary consists of a number of terms
(keywords), which are used to decide if a document belongs
to a given category or not. We used the stemming algo-
rithm [2] to group different grammatic word forms. We also
assume the multivariate binomial data model [3] when each
document is represented as a binary vector xi of length n,
where xij = 1 if and only if the document contains the j-th
term (keyword). The training of the pairwise classifier was
performed as follows. For each category, documents of the
training set are used to construct the vocabulary according
to the mutual information criterion. Then the training doc-
uments assigned to each category are represented by binary
vectors, and the threshold values Λα are computed accord-
ing to (11), where α is the parameter used to balance the
probability of false acceptance and false rejection. To clas-
sify a document, it was first transformed to a binary vector

y(i) = (y
(i)
1 , . . . , y

(i)
n ), where y

(i)
t = 1 if and only if the t-th

term in the vocabulary of the i-th category appears in the
document. For each category the authentication test de-
scribed above is applied, and the document is assigned to a
category if it passes this test with positive decision.

Results of simulation are assumed to be presented in the
final version.
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Table 1: Results of processing several vectors by the
verifier for the matrix X defined in (13) when ε = 0,
α = 0.4, Λ = 8.9, where Λ` = Λ(x`,y), ` = 1, . . . , L. If
the vector y is equal to the vector at the `-th row
of the matrix X, then the value of ` is given in the
first column.

` y Λ1 Λ2 Λ3 Λ4 Λ5 Y/N
1 001110 8.7 7.5 12.1 10.1 8.7 Y
2 001011 7.5 6.4 10.9 8.9 7.5 Y
5 000111 8.7 7.5 12.1 10.1 8.7 Y

000010 8.7 7.5 12.1 10.1 8.7 Y
000011 8.1 6.9 11.5 9.5 8.1 Y
001010 8.1 6.9 11.5 9.5 8.1 Y
001111 8.1 6.9 11.5 9.5 8.1 Y

3 101000 12.1 10.9 15.5 13.5 12.1 N
4 010011 10.1 8.9 13.5 11.5 10.1 N

... N


