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ABSTRACT
In their recent paper the authors constructed infinite fam-
ilies of planar Dembowski-Ostrom multinomials over Fp2k

where p is any odd prime. In the present work we prove
that for k odd one of the constructed families of planar func-
tions define new commutative semifields (in part by study-
ing the nuclei of these semifields). This implies that these
functions are CCZ-inequivalent to all previously known PN
mappings.
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1. INTRODUCTION
For any positive integer n and any prime p a function F
from the field Fpn to itself is called differentially δ-uniform
if for every a 6= 0 and every b in Fpn , the equation F (x +
a) − F (x) = b admits at most δ solutions. Functions with
low differential uniformity are of special interest in cryptog-
raphy (see [3, 16]). Differentially 1-uniform functions are
called perfect nonlinear (PN) or planar. PN functions exist
only for p odd. For p even differentially 2-uniform functions,
called almost perfect nonlinear (APN), are those which have
the lowest possible differential uniformity.
There are several equivalence relations of functions for which
differential uniformity is invariant. First recall that a func-
tion F over Fpn is called linear if

F (x) =
X

0≤i<n

aix
pi

, ai ∈ Fpn .

A sum of a linear function and a constant is called an affine
function. We say that two functions F and F ′ are affine
equivalent (or linear equivalent) if F ′ = A1 ◦ F ◦ A2, where
the mappings A1, A2 are affine (resp. linear) permutations.
Functions F and F ′ are called extended affine equivalent
(EA-equivalent) if F ′ = A1◦F ◦A2+A, where the mappings
A, A1, A2 are affine, and where A1, A2 are permutations.
Two mappings F and F ′ from Fpn to itself are called Carlet-
Charpin-Zinoviev equivalent (CCZ-equivalent) if for some
affine permutation L of F

2
pn the image of the graph of F

is the graph of F ′, that is, L(GF ) = GF ′ where GF =
{(x, F (x)) | x ∈Fpn} and GF ′ = {(x,F ′(x)) | x ∈Fpn}.
Differential uniformity is invariant under CCZ-equivalence.
EA-equivalence is a particular case of CCZ-equivalence and
any permutation is CCZ-equivalent to its inverse. In [4], it
is proven that CCZ-equivalence is even more general. How-
ever, it is proven in [5, 14], that for PN functions CCZ-
equivalence coincides with EA-equivalence.

Almost all known planar functions are DO polynomials. Re-
call that a function F is called Dembowski-Ostrom polyno-
mial (DO polynomial) if

F (x) =
X

0≤k,j<n

akjx
pk+pj

, aij ∈ Fpn .

When p is odd the notion of planar DO polynomial is closely
connected to the notion of commutative semifield. A ring
with left and right distributivity and with no zero divisors
is called a presemifield. A presemifield with a multiplicative
identity is called a semifield. Any finite presemifield can be
represented by S= (Fpn , +, ⋆), where (Fpn , +) is the addi-
tive group of Fpn and x⋆y = φ(x, y) with φ a function from
F

2
pn onto Fpn , see [8].

Let S1 = (Fpn , +, ◦) and S2 = (Fpn , +, ⋆) be two presemi-
fields. They are called isotopic if there exist three linear
permutations L, M, N over Fpn such that

L(x ◦ y) = M(x) ⋆ N(y),

for any x, y ∈Fpn . The triple (M, N, L) is called the iso-
topism between S1 and S2. If M = N then S1 and S2 are
called strongly isotopic.
Let S be a finite semifield. The subsets

Nl(S)={α ∈ S : (α ⋆ x) ⋆ y = α ⋆ (x ⋆ y) for all x, y ∈ S},

Nm(S)={α ∈ S : (x ⋆ α) ⋆ y = x ⋆ (α ⋆ y) for all x, y ∈ S},

Nr(S)={α ∈ S : (x ⋆ y) ⋆ α = x ⋆ (y ⋆ α) for all x, y ∈ S},

are called the left, middle and right nucleus of S, respec-
tively, and the set N(S) = Nl(S) ∩Nm(S) ∩ Nr(S) is called
the nucleus. These sets are finite fields and, if S is commu-
tative then Nl(S) = Nr(S). The nuclei measure how far S

is from being associative. The orders of the respective nuclei
are invariant under isotopism [8].
Let S = (Fpn , +, ⋆) be a commutative presemifield which
does not contain an identity. To create a semifield from S

choose any a ∈ F
∗
pn and define a new multiplication ◦ by

(x ⋆ a) ◦ (a ⋆ y) = x ⋆ y

for all x, y ∈ Fpn . Then S
′ = (Fpn , +, ◦) is a commuta-

tive semifield isotopic to S with identity a ⋆ a. We say S
′

is a commutative semifield corresponding to the commuta-
tive presemifield S. An isotopism between S and S

′ is a
strong isotopism

`

La(x), La(x), x
´

with a linear permuta-
tion La(x) = a ⋆ x, see [8].
Let F be a planar DO polynomial over Fpn . Then S =
(Fpn , +, ⋆), with

x ⋆ y = F (x + y) − F (x) − F (y)

for any x, y ∈ Fpn , is a commutative presemifield. We de-
note by SF = (Fpn , +, ◦) the commutative semifield corre-
sponding to the commutative presemifield S with isotopism
`

L1(x), L1(x), x
´

and we call SF = (Fpn , +, ◦) the commuta-
tive semifield defined by the planar DO polynomial F . Con-
versely, given a commutative presemifield S = (Fpn , +, ⋆) of



odd order, the function given by

F (x) =
1

2
(x ⋆ x)

is a planar DO polynomial [8]. It is proven in [5] that for pla-
nar DO polynomials CCZ-equivalence coincides with linear
equivalence. This implies that two planar DO polynomials F
and F ′ are CCZ-equivalent if and only if the corresponding
commutative semifields SF and SF ′ are strongly isotopic. It
is proven in [8] that for the n odd case two commutative
presemifields are isotopic if and only if they are strongly
isotopic. There are also some sufficient conditions for the n
even case when isotopy of presemifields implies their strong
isotopy [8]. Thus, in the case n even it is potentially pos-
sible that isotopic commutative presemifields define CCZ-
inequivalent planar DO polynomials. However, in practice
no such cases are known.
Although commutative semifields have been intensively stud-
ied for more than a hundred years, up to recently there were
only eight distinct cases of commutative semifields of odd or-
der known (see [5]), and only three of them were defined for
any odd prime p (the five other known cases were defined
only for p = 3):

(i) x2

over Fpn which corresponds to the finite field Fpn ;

(ii) xpt+1

over Fpn , with n/ gcd(t, n) odd, which correspond to
Albert’s commutative twisted fields [1, 9, 12];

(iii) the functions over Fp2k , which correspond to the Dick-
son semifields [10].

The representations of the Dickson PN functions can be
found in [15]. The only known PN functions which are not

DO polynomials are the power functions x
3t+1

2 over F3n ,
where t is odd and gcd(t, n) = 1 [7, 13]. In recent works
[5] and [17] other three families of planar DO polynomials
defined for any odd prime p have been constructed: for any
odd prime p and positive integers s, k and t, and n = 2k

(i∗) (bx)ps+1 − (bx)pk(ps+1) +
Pk−1

i=0 cix
pi(pk+1),

over Fpn where
Pk−1

i=0 cix
pi

is a permutation of Fpn

with coefficients in Fpk , b ∈ F
∗
pn , and gcd(k + s, 2k) =

gcd(k + s, k), gcd(ps + 1, pk + 1) 6= gcd
`

ps + 1, (pk +

1)/2
´

, see [5];

( ii∗) bxps+1 + (bxps+1)pk

+ cxpk+1 +
Pk−1

i=1 rix
pk+i+pi

,
over Fpn where b ∈ F

∗
pn is not a square, c ∈ Fpn \Fpk ,

and ri ∈ Fpk , 0 ≤ i < k, and gcd(k + s, n) = gcd(k +
s, k), see [5];

(iii∗) xps+1 − apt−1xpt+p2t+s

over Fp3t , where a is primitive in Fp3t , gcd(3, t) = 1,
t − s = 0 mod 3, 3t/ gcd(s, 3t) is odd, see [17].

In [5] we proved that PN functions (i*) and (ii*) are CCZ-
inequivalent to functions (i) and, when s 6= ±t then also to
functions (ii). The present paper is dedicated to the study of
the nuclei of the commutative semifields defined by (i*). In
particular, we prove that for k odd the commutative semi-
fields defined by functions (i*) are nonisotopic to Dickson
semifields. Besides, we prove here that functions (i*) are
CCZ-inequivalent to (ii) also when s = ±t under some con-
ditions on coefficients of (i*). These results imply in partic-
ular that for p 6= 3 and k odd the PN functions of (i*) are
CCZ-inequivalent to the previously known ones and define
new commutative semifields.

2. RESULTS
In [5] we proved that PN functions (i*) and (ii*) are CCZ-
inequivalent to functions (i) and, when s 6= ±t then also
to functions (ii). In the proposition below we prove that
when s = ±t the family of PN functions (i∗) always contains
functions CCZ-inequivalent to (ii).

Proposition 1. Let p be an odd prime, s and k positive
integers, n = 2k. The function

F (x) = xps+1 − xpk+s+ps

± xpk+1

is CCZ-inequivalent to (ii) when s = ±t over Fpn .

Proof. Assume that F and G = xps+1 are CCZ-equivalent
(that is, t = s; the proof for the case t = −s is similar).
Since F is a planar DO polynomial then CCZ-equivalence
coincides with linear equivalence and, therefore, implies the
existence of linear permutations L1 and L2, defined by

L1(x) =

n−1
X

i=0

uix
pi

, (1)

L2(x) =

n−1
X

i=0

vix
pi

, (2)

such that

G
`

L1(x)
´

+ L2

`

F (x)
´

= 0.

We get

0 =

 

n−1
X

i=0

uix
pi

!ps+1

+

n−1
X

i=0

vi

“

xps+1 − xpk+s+ps

± xpk+1
”pi

=

n−1
X

i,j=0

uiu
ps

j xpi+pj+s

+

n−1
X

i=0

vix
pi+s+pi

−

n−1
X

i=0

vix
pi+s+k+pi+k

±

n−1
X

i=0

vix
pi+k+pi

.

Since the latter expression is equal to 0 then the terms of

the type x2pi

, 0 ≤ i < n, should vanish and we get

uiu
ps

i−s = 0, 0 ≤ i < n. (3)

Considering items with exponents pi+s + pi and with expo-
nents pi+k + pi, 0 ≤ i < n, we get

vi − vi+k + uiu
ps

i + ui+su
ps

i−s = 0, (4)

±vi + uiu
ps

i+k−s + ui+kups

i−s = 0, (5)

respectively. Equality (5) implies

±vi = −(uiu
ps

i+k−s + ui+kups

i−s) = ±vi+k. (6)

Equalities (4) and (6) imply

0 = vi − vi+k = −(uiu
ps

i + ui+su
ps

i−s). (7)

If ui 6= 0 then ui−s = 0 by (3). But if ui−s = 0 then ui = 0
by (7). Hence, L1 = 0 which is impossible since L1 is a
permutation. This contradiction shows that the functions
F and xps+1 are CCZ-inequivalent. 2

It is proven in [8] that, for any planar DO function F ,
isotopism between the commutative semifield defined by F
and a commutative twisted field, or the finite field, implies
strong isotopism. Thus, PN functions (i∗) define commuta-
tive semifields nonisotopic to the field and to Albert’s com-
mutative twisted fields. Due to the theorem below we will
see also that the commutative semifields of (i∗) are also non-
isotopic to Dickson semifields when k is odd and b ∈Fpk .



Theorem 1. Let F be a PN function of the family (i∗)
with b ∈Fpk . Then the middle nucleus of the commutative
semifield defined by F has a square order.

Proof. For any x, y ∈ Fp2k we denote

x ⋆ y = F (x + y) − F (x) − F (y)

= bps+1(xyps

+ xps

y)

−bpk(ps+1)(xpk

ypk+s

+ xpk+s

ypk

)

+
k−1
X

i=0

ci(x
pi

ypk+i

+ xpk+i

ypi

), (8)

and

L(x) = 1 ⋆ x = bps+1(x + xps

) − bpk(ps+1)(xpk

+ xpk+s

)

+

k−1
X

i=0

ci(x
pi

+ xpk+i

). (9)

Then the multiplication ◦ of the commutative semifield SF

defined by F is

x ◦ y = L−1(x) ⋆ L−1(y), (10)

for any x, y ∈ Fp2k .
We are going to prove that for any x, y ∈ Fp2k and any
α ∈ Fp2

(x ◦ L(α)) ◦ y = (y ◦ L(α)) ◦ x,

or, since L is a permutation then, equivalently, we need to
prove that

`

L(x) ◦ L(α)
´

◦ L(y) =
`

L(y) ◦ L(α)
´

◦ L(x),

that is,

L−1(x ⋆ α) ⋆ y = L−1(y ⋆ α) ⋆ x, (11)

due to (10). We have

L(x)pk

+ L(x) = 2
k−1
X

i=0

ci(x
pi

+ xpk+i

),

L(x)pk

− L(x) = 2bpk(ps+1)(xpk

+ xpk+s

)

−2bps+1(x + xps

).

Note that L(xpk

) = L(x)pk

. Then applying L−1 to both
sides of the equalities above we get

xpk

+ x = 2L−1
“

k−1
X

i=0

ci(x
pi

+ xpk+i

)
”

, (12)

xpk

− x = 2L−1
“

bpk(ps+1)(xpk

+ xpk+s

)

−bps+1(x + xps

)
”

. (13)

Then, using (12)-(13) and αp2

= α,

L−1(x ⋆ α) = L−1
“

bps+1(xαps

+ xps

α)

−bpk(ps+1)(xpk

αpk+s

+ xpk+s

αpk

)

+

k−1
X

i=0

ci(x
pi

αpk+i

+ xpk+i

αpi

)
”

= L−1
“

bps+1
`

xαps

+ (xαps

)ps´

−bpk(ps+1)
`

(xαps

)pk

+ (xαps

)pk+s´
”

+L−1
“

k−1
X

i=0

ci

`

(xαpk

)pi

+ (xαpk

)pk+i´
”

= −
1

2

`

(xαps

)pk

− xαps´

+
1

2

`

xαpk

+ (xαpk

)pk´

=
1

2
(αps

+ αpk

)x +
1

2
(α − αpk+s

)xpk

=



1
2
(α + αp)x + 1

2
(α − αp)xpk

if k + s is odd,
αx if k and s are even.

Hence, for k + s odd

L−1(x ⋆ α) ⋆ y =
1

2

“

(α + αp)x +
1

2
(α − αp)xpk

”

⋆ y

=
1

2

“

bps+1`(α + αp)xyps

+ (α + αp)xps

y

+(α − αp)xpk

yps

+ (α − αp)ps

xpk+s

y
´

−bpk(ps+1)
`

(α + αp)xpk

ypk+s

+(α + αp)xpk+s

ypk

+ (α − αp)pk

xypk+s

+(α − αp)pk+s

xps

ypk´

+

k−1
X

i=0

ci

`

(α + αp)xpi

ypk+i

+(α + αp)xpk+i

ypi

+(α − αp)pi

xpk+i

ypk+i

+(α − αp)pk+i

xpi

ypi´
”

= L−1(y ⋆ α) ⋆ x.

If k and s are even

L−1(x ⋆ α) ⋆ y = bps+1(αxyps

+ αxps

y)

−bpk(ps+1)(αxpk

ypk+s

+ αxpk+s

ypk

)

+

k−1
X

i=0

ci(α
pi

xpi

ypk+i

+ αpi

xpk+i

ypi

)

= L−1(y ⋆ α) ⋆ x.

Hence, L(Fp2) is contained in the middle nucleus of the
semifield SF and, therefore, since nuclei of a semifield are fi-
nite fields then the middle nucleus must have a square order.
2

Corollary 1. If k is odd and b ∈Fpk then the PN function
(i∗) defines a commutative semifield non-isotopic to Dickson
semifields (and therefore it is CCZ-inequivalent to Dickson
PN functions).

Proof. The middle nuclei of Dickson semifields have the
order pk (see [11]) which is not a square for k odd. Since the
orders of the middle nuclei of isotopic semifields are equal
then the commutative semifields defined by (i∗) are non-
isotopic to Dickson semifields due to Theorem 1. 2

Now we can formulate our main result.

Corollary 2. If p 6= 3 and k is odd then the PN functions

F (x) = xps+1 − xpk+s+ps

± xpk+1 of family (i∗) are CCZ-
inequivalent to all previously known PN functions and define
commutative semifields non-isotopic to all previously known
semifields.

The following two propositions give additional information
on the nuclei of semifields defined by (i*). Similar results
can be obtained also for semifields of (ii*).

Proposition 2. Let F be a PN function of the family (i∗)
and pd be the order of the middle nucleus of the commutative
semifield defined by F . Then d is divisible by gcd(s, k).

Proof. With notations (8)-(10) we are going to prove that
equality (11) takes place for any x, y ∈ Fp2k and any α ∈



Fpgcd(s,k) . Indeed, since αps

= αpk

= α then

L−1(x ⋆ α) = L−1
“

bps+1(xαps

+ xps

α)

−bpk(ps+1)(xpk

αpk+s

+ xpk+s

αpk

)

+

k−1
X

i=0

ci(x
pi

αpk+i

+ xpk+i

αpi

)
”

= L−1
“

bps+1
`

xα + (xα)ps´

−bpk(ps+1)`(xα)pk

+ (xα)pk+s´

+

k−1
X

i=0

ci

`

(xα)pi

+ (xα)pk+i´
”

= L−1(L(αx)) = αx. (14)

Hence,

L−1(x ⋆ α) ⋆ y = bps+1(αxyps

+ αxps

y)

−bpk(ps+1)(αxpk

ypk+s

+ αxpk+s

ypk

)

+

k−1
X

i=0

ci(α
pi

xpi

ypk+i

+ αpi

xpk+i

ypi

)

= L−1(y ⋆ α) ⋆ x.

Thus, L(Fpgcd(s,k)) is contained in the middle nucleus of the
semifield SF and, therefore, since nuclei of a semifield are
finite fields then d has to be divisible by gcd(s, k). 2

Proposition 3. Let F be a PN function of the family (i∗)
where ci = 0 for i not divisible by s. If pd is the order of the
left nucleus of the commutative semifield defined by F then
d is divisible by gcd(s, k).

Proof. With notations (8)-(10) we are going to prove that
the equality

L−1(x ⋆ α) ⋆ y = L−1(x ⋆ y) ⋆ α (15)

takes place for any x, y ∈ Fp2k and any α ∈ Fpgcd(s,k) . In-

deed, since αps

= αpk

= α then

x ⋆ α = bps+1(xαps

+ xps

α)

−bpk(ps+1)(xpk

αpk+s

+ xpk+s

αpk

)

+

k−1
X

i=0

cis(x
pis

αpk+is

+ xpk+is

αpis

)

= bps+1(xα + xps

α)

−bpk(ps+1)(xpk

α + xpk+s

α)

+
k−1
X

i=0

cis(x
pis

α + xpk+is

α)

= αL(x).

Hence,

L−1(x ⋆ y) ⋆ α = αL
`

L−1(x ⋆ y)
´

= α(x ⋆ y)

and using (14) we get

L−1(x ⋆ α) ⋆ y = (αx) ⋆ y

= bps+1(αxyps

+ αxps

y)

−bpk(ps+1)(αxpk

ypk+s

+ αxpk+s

ypk

)

+
k−1
X

i=0

cis(αxpis

ypk+is

+ αxpk+is

ypis

)

= α(x ⋆ y).

This proves equality (15). Thus, L(Fpgcd(s,k)) is contained
in the left nucleus of the semifield SF and, therefore, d has
to be divisible by gcd(s, k). 2
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