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ABSTRACT
The multiterminal hypothesis testing for arbitrarily varying
sources (AVS) is considered. This is an extension of Han’s
[1] and Ahlswede-Csiszár [2] schemes for a more general class
of sources. In part, the solutions can be easily specialized
for earlier known particular cases.
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1. INTRODUCTION
The history of hypothesis testing (HT) with communica-
tion constraints goes back to Ahlswede and Csiszár [2]. The
problem of HT for AVS’s was solved by Fu and Shen [3]. In
that paper they generalized Stein’s lemma, and later inves-
tigated exponential-type constraints in HT for that source
model in [4]. The latter study had implications for AVS
coding problem, with further advancement in [5]. AVS’s are
studied also in [6] in terms of logarithmically asymptotically
optimal testing.

HT problem with multiterminal data compression was con-
sidered by Han [1] as an extension of Ahlswede and Csiszár
[2] setting.

In our turn, instead of correlated discrete memoryless source
(DMS) studied in [1] we treat the arbitrarily varying corre-
lated one to generalize the solutions for HT under the mul-
titerminal data compression.

2. DEFINITIONS
Let X ,Y and S be finite sets. X and Y stand for alphabets
of sources, which are correlated with a law defined by corre-
lation state s ∈ S, the latter being the alphabet for states.
Let P(X ) and P(Y) be the set of probability distributions
(PDs) on X and Y, respectively, and P(X × Y) be the set
of joint PDs on X × Y.

An arbitrarily varying correlated source (AVCS) {X,Y,S}
is defined by the family of distributions on P(X ×Y) subject
to correlation states s ∈ S:

WXY
4
= {Ws,XY , s ∈ S} ⊂ P(X × Y) (1)

where

Ws,XY
4
= {WXY (x, y|s), x, y ∈ X}.

The corresponding marginal ones are

Ws,X
4
= {WX(x|s), x ∈ X}

Ws,Y
4
= {WY (y|s), y ∈ Y}.

They are grouped into the families

WX
4
= {Ws,X , s ∈ S},

WY
4
= {Ws,Y , s ∈ S}.

Logically, WX and WY make AVS’s.

The joint probability WN
s,XY of pair (x,y), x

4
= (x1, · · · , xN )

∈ XN , y
4
= (y1, · · · , yN ) ∈ YN , emitted from the AVCS

stayed at sequential states s
4
= (s1, · · · , sN ) ∈ SN is mea-

sured by

WN
s,XY(x,y)

4
=

N∏
n=1

WXY (xn, yn|sn), s ∈ SN . (2)

The code consists of the encodings f1 : XN → L1
N (⊆ XN ),

f2 : YN → L2
N (⊆ YN ) and decoding g1 : L1

N → XN , g2 :
L2

N → YN mappings, where |Ll
N |(||fl||), l = 1, 2, are the

volumes of the codes.

Suppose that the statistician observes AVCS indirectly, via
encoding functions of rate Rl, l = 1, 2, that is instead of
sample x only f1(x) is available and instead of sample y is
f2(y) available, where

1

N
log ||fl|| ≤ Rl.

Testifying the compressed data within the binary HT scheme
with communication constraints for unknown AVCS W, in
favor of one of two hypotheses

H0 : W =WXY (3)

H1 : W = GXY (4)

should be made a decision, where GXY is another set of
distributions family defined similarly to (1).

A test ϕN by the statistician is a partition of XN into two
disjoint subsets A and Ac. If x ∈ A then the test adopts
the hypothesis H0, otherwise the alternative H1. So the test
ϕN and the sets (A,Ac) are equivalent concepts.

In decision making in favor of one of two alternatives the
following errors may occur: the hypothesis Hl is adopted,
but the correct is Hk, l 6= k, l = 1, 2. We consider the
maximum probability of such errors over all state sequences
from SN . Then, the first kind error probability is

αAVS(ϕN ,WXY )
4
= max

s∈SN
WN

s,f1(X)f2(Y)(Ac),



and the error probability of the second kind is

βAVS(ϕN ,GXY )
4
= max

s∈SN
GN

s,f1(X)f2(Y)(A). (5)

Let

βAVS(N, ε, f1, f2,WXY ,GXY )
4
=

min
A⊂L1

N
×L2

N

{βAVS(ϕN ,GXY )

αAVS(ϕN ,WXY ) ≥ 1− ε, ∀s ∈ SN}, (6)

βAVS(R1, R2, N, ε,WXY ,GXY )
4
=

min
fl: log ||fl||≤NRl

{βAVS(N, ε, f1, f2,WXY ,GXY )} . (7)

As a standard HT problem, we are interested in asymptotic
behavior of (7). What we get towards this problem is pre-
sented in Section 4.

To proceed with definitions, introduce the convex hulls of
WN

f1(X)f2(Y) and GN
f1(X)f2(Y)

ŴN
f1(X)f2(Y)

4
= {

∑
s∈SN

λsW
N
s,f1(X)f2(Y), 0 ≤ λs ≤ 1,

∑
s∈SN

λs = 1}, (8)

ĜN
f1(X)f2(Y)

4
= {

∑
s∈SN

λsG
N
s,f1(X)f2(Y), 0 ≤ λs ≤ 1,

∑
s∈SN

λs = 1}. (9)

Define for k = 1, 2, ...

θAVS(R1, R2, k,WXY ,GXY )
4
= sup

f1: log ||f1||≤kR1

sup
f2: log ||f2||≤kR2

min
Ĝk

f(X)Y∈Ĝ
k
f1(X)f2(Y)

min
Ŵ k

f1(X)f2(Y)∈Ŵ
k
f1(X)f2(Y){

1

k
D(Ŵ k

f1(X)f2(Y)||Ĝk
f1(X)f2(Y))

}
(10)

where D(Ŵ k
f1(X)f2(Y)||Ĝk

f1(X)f2(Y)) is the information diver-

gence between two distributions Ŵ k
f1(X)f2(Y) and Ĝk

f1(X)f2(Y)

defined as

D(Ŵ k
f1(X)f2(Y)||Ĝk

f1(X)f2(Y))

=
∑

x∈Xk,y∈Yk

Ŵ k
f1(X)f2(Y)(x,y) log

Ŵ k
f1(X)f2(Y)(x,y)

Ĝk
f1(X)f2(Y)(x,y)

.

and

θAVS(R1, R2,WXY ,GXY )

4
= sup

k
θAVS(R1, R2, k,WXY ,GXY ). (11)

To deal with special cases of AVCS HT problem with and
without data compression we need extra notations.

For the partial data compression case of R2 > log |Y|, let

βAVS(R,N, ε,WXY ,GXY ), θAVS(R, k,WXY GXY )

and θAVS(R,WXY ,GXY ) be the corresponding version of
(7), (10) and (11), respectively, with setting R1 = R. Note
that

θAVS(R, k,WXY ,GXY )

= min
Ŵ k

f(X)Y∈Ŵ
k
f(X)Y

min
Ĝk

f(X)Y∈Ĝ
k
f(X)Y

θ(R, k, Ŵ k
f(X)Y, Ĝ

k
f(X)Y)

(12)

In Fu-Shen [3] AVS HT problem (6) can be rewritten as

βAVS(N, ε,WX ,GX)
4
= min
A⊂XN

{βAVS(ϕN ,GX) :

αAVS(ϕN ,WX) ≥ 1− ε, ∀s ∈ SN}, (13)

with X = Y and in Ahlswede-Csiszár [2] as

β(N, ε, f,WXY , GXY )
4
= min
A⊂f(XN )×YN

{GN
f(X)Y(A) :

WN
f(X)Y(A) ≥ 1− ε, ∀s ∈ SN}, (14)

with consideration

β(R,N, ε,WXY , GXY )

4
= min

f : log ||f ||≤NR
{β(N, ε, f,WXY , GXY )}, (15)

where WXY and GXY are unique members of WXY and
GXY , respectively, as |S| = 1.

Further, denote for k = 1, 2, . . .

θ(R, k,WXY , GXY )

4
= sup

f : log ||f ||≤kR

{ 1

k
D(Wf(X)Y ||GXY )}. (16)

Section 3 studies this partial compression scenario first.

3. HT WITH COMMUNICATION
CONSTRAINTS

The preliminary discussions and definitions above allow to
formulate our results. For the AVCS HT problem in Ahlswe-
de-Csiszár scheme we have

Theorem 1. For every R ≥ 0,

a)

lim sup
N→∞

1

N
log βAVS(R,N, ε,WXY ,GXY )

≤ −θAVS(R,WXY,GXY) ∀ε ∈ (0, 1),

b)

lim
ε→0

lim inf
N→∞

1

N
log βAVS(R,N, ε,WXY ,GXY )

≥ −θAVS(R,WXY,GXY).

Apparently, setting |S| = 1 we get the result by Ahlswede
and Csiszár [2].

Theorem 2. For every R ≥ 0 we have

a)

lim sup
N→∞

1

N
log β(R,N, ε,WN

f(X)Y, G
N
f(X)Y)

≤ −θ(R,WN
f(X)Y, G

N
f(X)Y) ∀ε ∈ (0, 1),



b)

lim
ε→0

lim inf
N→∞

1

N
log β(R,N, ε,WN

f(X)Y, G
N
f(X)Y)

≥ −θ(R,WN
f(X)Y, G

N
f(X)Y).

With R ≥ log |X | we get Stein’s lemma for AVS [3].

Lemma 1 (Stein’s Lemma for AVS). For every ε ∈
(0, 1) we have

lim sup
N→∞

− 1

N
log βAVS(N, ε,WX ,GX)

= min
ŴX∈ŴX

min
ĜX∈ĜX

D(ŴX ||ĜX),

where ŴX and ĜX are given by (8) and (9) for one source
in one dimensional case (N = 1).

Proof of Theorem 1. A similar proof of Theorem 2 [2] is
valid here.

a) Pick a k and consider the k-dimensional problem of HT
according to hypotheses

H0 :Wk
f(X)Y H1 : Gk

f(X)Y.

Applying Stein’s lemma for AVS’s we get

lim sup
l→∞

[
1

lk
log βAVS(R, lk, ε,WXY ,GXY )

]
≤ −θAVS(R, k,WXY ,GXY )

for every ε ∈ (0, 1). Since lk ≤ N ≤ (l + 1)k we have

βAVS(R, (l+1)k, ε,WXY ,GXY ) ≤ βAVS(R,N, ε,WXY ,GXY )

≤ βAVS(R, lk, ε,WXY ,GXY ),

it follows that

lim sup
N→∞

[
1

N
log βAVS(R,N, ε,WXY ,GXY )]

≤ −θAVS(R, k,WXY ,GXY )

for every ε ∈ (0, 1). Since k was arbitrary, this proves asser-
tion a).

To prove the second passage we should perform several es-
timates.

For ĜN
f(X)Y ∈ ĜN

f(X)Y there exist, λs, s ∈ SN , with proper-
ties ∑

s∈SN

λs = 1, and 0 ≤ λs ≤ 1,

such that

ĜN
f(X)Y =

∑
s∈SN

λsG
N
s,f(X)Y.

Then for every ĜN
f(X)Y ∈ ĜN

f(X)Y and A ⊆ f(XN )× YN

ĜN
f(X)Y(A) ≤ max

s∈SN
GN

s,f(X)Y(A). (17)

Similarly, from (17) we have that for everyA ⊆ f(XN )× YN

and ŴN
f(X)Y ∈ ŴN

f(X)Y

ŴN
f(X)Y(Ac) ≤ max

s∈SN
WN

s,f(X)Y(Ac).

For a fixed ŴN
f(X)Y ∈ ŴN

f(X)Y

{A : A ⊆ f(XN )× YN &WN
s,f(X)Y(A) ≥ 1− ε, ∀s ∈ SN}

= {A : A ⊆ f(XN )× YN & WN
s,f(X)Y(Ac) ≤ ε, ∀s ∈ SN}

⊆ {A : A ⊆ f(XN )× YN & ŴN
f(X)Y(Ac) ≤ ε}

= {A : A ⊆ f(XN )× YN & ŴN
f(X)Y(A) ≥ 1− ε}. (18)

From (17) and (18) we have for every ŴN
f(X)Y ∈ ŴN

f(X)Y

and ĜN
f(X)Y ∈ ĜN

f(X)Y

βAVS(R,N, ε,WXY ,GXY )

≥ min
A⊆f(XN )×YN , Ŵ N

f(X)Y(A)≥1−ε

ĜN
f(X)Y(A),

≥ min
f : log ||f ||≤NR

min
A⊆f(XN )×YN , Ŵ N

f(X)Y(A)≥1−ε

ĜN
f(X)Y(A)

= β(R,N, ε, ŴN
f(X)Y, Ĝ

N
f(X)Y). (19)

b) In view of (12), (19) and the b) point of Theorem 2 we
get the second part of Theorem 1.

We would like to prove a stronger result (as it is done in [2])
conjectured here as

Theorem 3.

lim
N→∞

1

N
log βAVS(R,N, ε,WXY ,GXY )

= −θAVS(R,WXY,GXY)

for all R ≥ 0 and ε ∈ (0, 1).

Remark 1. The single-letter characterization problem of
(6) remains open.

4. HT WITH MULTITERMINAL DATA
COMPRESSION

For our extension of Han’s [1] HT problem with multiter-
minal data compression was possible to get the following
results.

Theorem 4. For every R1 ≥ 0, R2 ≥ 0 and ∀ε ∈ (0, 1) we
have

a)

lim sup
N→∞

[
1

N
log βAVS(R1, R2, N, ε,WXY ,GXY )

]
≤ −θAVS(R1, R2,WXY ,GXY ),

b)

lim
ε→0

lim inf
N→∞

[
1

N
log βAVS(R1, R2, N, ε,WXY ,GXY )

]
≥ −θAVS(R1, R2,WXY ,GXY ),

c)

lim sup
N→∞

[
1

N
log βAVS(R1, R2, N, ε,WXY ,GXY )

]
≥ − min

Ŵ N
XY
∈ŴN

XY

min
ĜN

XY
∈ĜN

XY

D(ŴN
XY ||ĜN

XY ).



Proof of Theorem 4. a) Pick a k and consider the k-
dimensional problem of HT according to hypotheses

H0 :Wk
f1(X)f2(Y) H1 : Gk

f1(X)f2(Y).

Applying Stein’s lemma for AVS’s we get

lim sup
l→∞

[
1

lk
log βAVS(R1, R2, lk, ε,WXY ,GXY )

]
≤ −θAVS(R1, R2, k,WXY ,GXY )

for every ε ∈ (0, 1). Since lk ≤ N ≤ (l + 1)k we have

βAVS(R1, R2, (l + 1)k, ε,WXY ,GXY )

≤ βAVS(R1, R2, N, ε,WXY ,GXY )

≤ βAVS(R1, R2, lk, ε,WXY ,GXY ),

then it follows that

lim sup
N→∞

[
1

N
log βAVS(R1, R2, N, ε,WXY ,GXY )]

≤ −θAVS(R1, R2, k,WXY ,GXY )

for every ε ∈ (0, 1). Since k was arbitrary, this proves the a)
point of the theorem.

b) By analogy of (19)

βAVS(R1, R2, N, ε,WXY ,GXY )

≥ β(R1, R2, N, ε, Ŵ
N
f1(X)f2(Y), Ĝ

N
f1(X)f2(Y)). (20)

For every function f1, f2 defined on XN and every A ⊂
L1

N × L2
N , we have

D(ŴN
f1(X)f2(Y)||ĜN

f1(X)f2(Y)) ≥ α log
α

β
+ (1− α) log

1− α
1− β

(21)
where

α = ŴN
f1(X)f2(Y)(A), β = ĜN

f1(X)f2(Y).

By (6) and (7) we can choose f1, f2 and A such that

log ||fl|| ≤ NRl, α ≥ 1− ε

and

β = β(R1, R2, N, ε, Ŵ
N
f1(X)f2(Y), Ĝ

N
f1(X)f2(Y)).

Then (10), (11) and (21) give

θ(R1, R2, Ŵ
N
f1(X)f2(Y), Ĝ

N
f1(X)f2(Y))

≥ θ(R1, R2, N, Ŵ
N
f1(X)f2(Y), Ĝ

N
f1(X)f2(Y))

≥ 1

N
D(ŴN

f1(X)f2(Y)||ĜN
f1(X)f2(Y))

≥ −1− ε
N

log β(R1, R2, N, ε, Ŵ
N
f1(X)f2(Y), Ĝ

N
f1(X)f2(Y))−

h(α)

N

where

h(α) = −α logα− (1− α) log (1− α).

Then for every ŴN
f1(X)f2(Y), Ĝ

N
f1(X)f2(Y)

1− ε
N

log β(R1, R2, N, ε, Ŵ
N
f1(X)f2(Y), Ĝ

N
f1(X)f2(Y))

≥ −θ(R1, R2, Ŵ
N
f1(X)f2(Y), Ĝ

N
f1(X)f2(Y))

≥ −θAVS(R1, R2, k,WXY ,GXY ).

(20) and the last inequality complete the proof.

c) Using Stein’s lemma for AVS’s (Lemma 1) and the mono-
tonicity of function βAVS(R,N, ε,WXY ,GXY ) in R, as well
as the same property for βAVS(R1, R2, N, ε,WXY ,GXY ) in
(R1, R2), we get the point c) of the theorem.

Remark 2. R2 →∞ we get Theorem 1 from the points a)
and b) of Theorem 4.

In case of |S| = 1 Theorem 4 results in an answer to Han’s
HT problem as

Theorem 5. For every R1 ≥ 0, R2 ≥ 0 and ∀ε ∈ (0, 1) we
have

a)

lim sup
N→∞

[
1

N
log β(R1, R2, N, ε,WXY , GXY )

]
≤ −θ(R1, R2,WXY , GXY ),

b)

lim
ε→0

lim inf
N→∞

[
1

N
log β(R1, R2, N, ε,WXY , GXY )

]
≥ −θ(R1, R2,WXY , GXY ),

c)

lim sup
N→∞

[
1

N
log β(R1, R2, N, ε,WXY , GXY )

]
≥ −D(ŴXY ||ĜXY ),

β(R1, R2, N, ε,WXY , GXY ) and θ(R1, R2,WXY , GXY ) being
respective notations specialized from (7) and (11) for the
model [1].

Remark 3. Comparison of Theorem 5 with the single- let-
ter estimate given in [1] for the HT with multiterminal data
compression is another open problem.
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