

Development of a Scripting Language Interpreter for
Acquisition of Expert Knowledge in a Regular Way

Tadevos Baghdasaryan

Laboratory of Cognitive
Algorithms and Models, IPIA,

Academy of Science of Armenia
tbs_@mail.ru

Arthur Grigoryan

Laboratory of Cognitive Algorithms
and Models, IPIA,

Academy of Science of Armenia,
Yerevan Telecommunication

Research Institute
grigoryan.arthur@gmail.com

Zaven Naghashyan

State Engineering University of
Armenia

znaghash@googlemail.com

ABSTRACT
A software package for building knowledge base competitive
software agents has been designed and developed. It uses
PPIT (Personalized Planning and Integrated Testing)
algorithm as a base for solving problems of SSRGT class. The
PPIT algorithms elaborate moves in target positions
depending on the knowledge in the agent’s knowledge base,
which contains formal structures of attributes, goals,
strategies, plans, etc. In the current implementation of the
package, the problem of the regular acquisition of the expert
knowledge, was not solved. In this paper we suggest an
approach to solving the problem by using JavaScript language
interpreter for acquiring and managing knowledge formal
structures, represented with JavaScript source code in Object
Oriented manner.

1. INTRODUCTION
We developed a software package, components of which can
be used as a basis for building knowledge [1, 2, 3] base
competitive software agents, with the possibility to improve
their knowledge in a regular way, by using experts’
knowledge. The program of the agent should solve SSRGT
class’ problems. The SSRGT class represents problems,
which solution space can be described as reproducible game
trees. Combinatory games like chess and checkers can be
example of such problems. Our software package should
include programming implementations of algorithms which
are developed for solving sub-problems of the main problem.
Taking into account that each problem of the class has its
common and individual aspects, software package should
cover all common aspects and be as flexible as possible to be
adapted for working with concrete problem’s personalized
aspects. In the paper we present an approach to regular
acquisition of experts’ knowledge by competitive agents.

2. BASICS OF THE PROGRAM
PACKAGE FOR PPIT
As a base for the package, the PPIT program is chosen. It uses
the general knowledge [4], as well as experts’ personalized
knowledge. Personalized expertise is the expertise, that
human gets during his personal life experience, his world-
view. Another specification of non-communicable knowledge
is that it is a knowledge which has non-communicable
components. The question of how that knowledge should be
passed from human experts to the computer program, during
their communication, is still unresolved. For the current
implementation of the package as sample SSRGT class
problem, the chess game was chosen.
Each node of the SSRGT class problems' tree represents some
state of the system, in which the agent acts. In case of chess, it
represents a state of the chess board with available pieces on
it. Let's name each state (node of the tree) a situation. The
agent has a possibility to act on the system by changing the

system states. Actions are limited by the game rules. In the
real world problems, as the game rules we have physical
limitations of the environment.
Let’s call the elementary influence of the agent on the system,
during which it changes its state – an action. Thus, each next
situation (node of the game tree) differs from the previous
state by actions. The goal of the agent is to win the game, i.e.
have a Mat situation on the board. For reaching the goal, it
should build a chain of actions from the current and Mat
situations. Each intermediate situation in the change is the
intermediate goal of the agent. Let’s call the composition of
actions that connect some situation with the target situation, a
strategy. Let’s call the description of a strategy, a plan. The
strategy explicitly defines the next turn from the current state
of the system. To make a meaningful turn, the agent should
find the strategy, which connects the target situation with the
current situation. There are two ways to do that:

1. By dynamically traversing the game tree and testing
different chains of turns for finding the one that
reaches the target state. In other words, by searching
the tree.

2. By using an already learned, stored plan, which
corresponds to the current situation.

Both ways are important, but here we focus the second
approach, that is by investigating possibilities of creating,
storing and using plans. Two important attributes of the plans
are initial and target states. Using that attributes, the agent
chooses relevant plans from its knowledge base. Thus it is
important to represent the system states within the agent's
knowledge store. The agent also should realize the
correspondence of the objects in its memory with the real
objects of the tree and vice versa. According to this we can
say that the agent first of all has to have possibility to differ
real objects from each other. For example, it should differ
different kinds of pieces, their colors, their possible relations
(e.g. piece belongs to some field). Such kind of initial
functionality can be prebuilt in the agent. By the usage of
initial objects, agent can build higher level representation of
the system attributes. As system attributes, we consider parts
of it. State of the system can also be considered as an
attributed built using lower level attributes.
We have used the Object Oriented (OO) programming
methodology for designing the agent architecture. In
accordance with it, we design the agent’s knowledge base and
its supporting procedures.
2.1. Implementation of algorithm in the
form of dynamic loaded library
PPIT_ROOTS dll
We design shells of PPIT programs as a composition of the
following basic units:

• Reducing Hopeless Plans (RHP)
• Choosing Plans with Max Utility (CPMU)
• Generating Moves by a Plan (GMP) [5]

In present C++ implementation of PPIT [5] program unit of
knowledge are realized as ОО classes with the specialized
interface for each type of knowledge and uniform for the
program as a whole. In program operations the following
procedures are realized:

 Selecting plans most suitable to a current position
from sets of all plans (it is fulfilled for each
situation).

 Reducing those plans which cannot be realized (for
example if the plan suggests to use such resource
which is not accessible) (it is fulfilled for each
position).

 Construction of all trajectories, the fixed length (it is
fulfilled for each position).

 Checking an accessibility of a purpose, for each
trajectory (round each trajectory allowed bands are
under construction, they are estimated on a tag of
realizability of the selected purpose), and according
to the received outcomes of assignment of some
values or priorities (it is fulfilled for each trajectory)

 Calculation of the value or priority of the selected
plan by assigning to it of a maximum estimation or
priority of available trajectories (it is fulfilled for
each schedule).

 Selecting plans with maximum value or priority, by
a choice of the plan with a maximum estimation or
priority from all available already estimated planes.

 Choosing operations according to already selected
suitable plans.

3. AN APPROACH TO THE REGULAR
ACQUISITION OF EXPERT
KNOWLEDGE FOR TRADING AGENTS
In the Management Strategy Provision (MSP) problem a
company is competing in oligopoly market for some success
criteria (max cumulative profit, max return on investment,
etc.) and is going to make decisions in market situations that
are consistent with the best strategy at least for defined
periods of the competition.
In order to find the best performance strategy for the acting
agent, various strategy plans need to be dynamically
simulated (the process of making “on-the-job” performance
assessment). This simulation supposes running the particular
strategy plan (SP) for the agent throughout the game flow
against the other competing parties, applying real
(quantitative) values to the SP`s qualitative moves and
thereby estimating them and further selecting the most
acceptable one [6].
Let’s suppose there is a mechanism for strategy plan
assessment and selection. What about the development of the
strategy plans?
The proposed approach is that a plan is described in some
easy-readable high-level language (scripting language) as
sequences of statements and stored in a separate data unit
(some text file). In order to facilitate the process of writing a
plan script another application – the Strategy Builder Tool is
created. It is used for visual development/changing and
further translation of the strategy plan into terms of the
mentioned language. In statements there may be points with
some parameters which would be subjects for the agent to
perform variations and quantifications on a game tree in order
to find the most appropriate values in particular situation [6].
Doing this way it would facilitate the creation of Strategy
Plans libraries which further could be used by the agent as the
knowledge base.
At first some format representing a strategy plan should be
specified for a script that could be stored in a separate data

unit - in a file (or multiple such scripts could be collected in
one file).

The agent program itself should be able to read such script
and act accordingly.
Another software part should be created for the strategy plans
(scripts) definition and edition, so one can describe the agent
behavior and store it in a separate file.
The key advantages of this approach are the following:
there is no need to change the agent-part source code making
it to understand and run another strategy plan. More, the
actual SP in use can be swapped with another without
interrupting the simulation process.
The process of plan description becomes much easier because
the user operates with limited set of high level scripting terms
and operators that make the statements closer to natural
languages. High-level means there is no matter which term or
operator is applied to which type or kind of data or process
evaluation. If there is a case when some term is not applicable
anyway – it would be intuitively clear for the user (since by
perceptive point of view the statement construction and terms
themselves are close to natural language) and moreover, he
would be notified about by the builder tool)
the plan creation or changing does not require the user to be a
programmer; a user just needs to know about the game
(model) rules and types of data/terms which are described in
corresponding documentation.
Thus, we need some kind of specialized high-level language
qualitatively describing the agent’s behavior. It should be
used by both parties (by the agent and the editor software
units) when creating (editor) or reading (agent) a strategy
plan. The language should operate with all task-specific
entities in a qualitative (or behavioral) manner and define the
points where the quantification must be done when
dynamically tested by the agent part.
Obviously, every kind of competing problem (game) may be
put in accordance with its own specific version of such a
language, describing the objects, situations, states, events and
actions (moves) that are specific for the given problem.
The description of such scripting language for dealing
particularly with the TAC problem will be given below in
“Operators and Functions” section.

3.1. Distinguishing TAC Events
The flow of the Trading Agent Competition day, in general, is
described with the following row of events:

• Customer RFQs are received
• Customer orders are received
• Supplier offers are received
• Simulation status notification

Each event causes execution of its corresponding procedure,
so for each of these events we should have an assigned “sub-
strategy plan” (SSP). Described by terms of the language,
such SSP consists of one or several statements with included
actions. We can construct the statement so that the actions
may occur, reoccur or be absent based on rules or/and
conditions. Description of some kind of actions may require
fixed position in a statement, following or preceding some
other actions or conditions.
For different events some of the language terms and data
objects may be not applicable and therefore might be
inaccessible. So, for every event there is a set of objects and
data that are active and operable.
Along with basic conditional operators, the actions and
operations here are defined as high-level.

Plan
Design/Edition
(Builder tool)

SP file
Agent

Software

SP file

SP file

scripts

3.2. High Level Regulation Concepts
Saying “high-level” means independence from the type of
operating data and the ability of dealing with some level of
abstraction. This abstraction level will operate with
comparative and absolute conceptions, for example, terms
(that are operators, in fact) like “better”, “worse”, “similar”,
“soonest”, “later”, “more”, “least”, etc. And as defined by
term “abstraction”, these terms would be applied to any type
of data that are used within the occurred event, i.e. during the
procedure being executed.

3.3. Types of Data
For each event there is an active set of data objects and basic-
type data. “Active” means that during the particular event
only these data are accessible and may be operated with.
There are some types of basic data. Objects are represented as
sets of complex structured data (dynamic data vectors and
tables) that may be changed in size and containing data as the
simulation is running with encapsulated methods for handling
these data. An example – “Deal history” object. It should
collect and store information about deals made by the agent,
i.e. storage of statistical data of deals that have ever been
performed by the agent from the very start of the simulation.
“Production history”, “Customer orders history”, “Supplier
orders history”, “Profit history”, “Delivery history”, “Factory
utilization”, “CPU Component history”, etc. However, any
data object should be “smart enough” for using by the high-
level operators and functions (described below).
The offered scripting language includes the following types of
operators: basic (conditional) and high-level. These are of the
following types: date-time and period processing (terms like
“today”, “yesterday”, “before”, “… days ago”, “… days
before”, “ever”, “during”, “when”, etc.), comparative (terms
like “better than”, “like (equal)”, “more than”, “faster than”),
evaluative (terms like “good”, “better”, “fast”, “slow”,
“efficiency”, etc.), calculative (terms like “more”, “less”,
“count of”, etc.), process workflow control (like cyclic
operators with implicit number of loops, etc), critical values
(like “max of …”, “average of …”, “min of …”, etc.)
Functions describe particular actions agent may perform and
there may be some functions that are available within
particular event. Functions may be used as the final actions
after conditional operators, as parts of rules or as independent
(fixed) actions. Examples of functions are “keep count of ...”,
“order from supplier ...”, “do nothing”, “do like ...”, etc.
There are two stages in processing of statements. On the first
stage we may run any kind of routine tasks related to filtering,
sorting, etc. of incoming data of event. Then, on the second
stage we perform other actions (selection, etc), which may be
described by rules or (as more complicated) may depend on
some condition(s). In conditional statement several conditions
may be logically grouped by using ‘OR’ and ‘AND’
operators. Also, there may be more than one statement
defining the agent’s behavior during the particular event.
In any statement there may be a point where the agent may do
some variations on the game tree in order to find the most
appropriate quantified value of some parameter for particular
situation.
Below are examples of complete statement with fixed actions
for “Customer RFQs are received” event:
‘do_filtering_by_price’; ‘do_filtering_by_date’; ‘do_sort_by
due date acceding’; ‘select_first N requests’;
‘select_requests_from_index M to K’

3.4. The Tool
Strategy Plans Builder tool is used for construction and
edition of strategy plans visually, in an easy way, like drag-

and-dropping elements within a CAD environment. When the
design or change of an SP is done the plan description is
translated into the text representation according to specified
format and is saved in some structured format (for example,
as XML file). Automatic translation means the final SP
description could be constructed correctly, with no syntax
errors and without corruption of statement format.
Usage of this tool facilitates development of new strategy
plans as there is no need to create or change a plan manually.
Instead, the user just creates the plan visually, and then the
application translates it into the script using described
scripting language and saves it in a file. The advantage of this
is that it doesn’t require any development skills from the
person running the agent.

4. JAVASCRIPT INTERPRETER
PPIT_ROOTS library is the initial implementation of the
PPIT algorithm. Its goal is in proving an ability of PPIT to
successfully solve SSRGT class problems.
Historically, PPIT_ROOTS was designed to solve chess
related problems. Thus, its implementation is strongly
interconnected with chess concepts. Experiments with usage
of expert knowledge for solving Reti and Nodareishvili etudes
were proven viability of approach used in PPIT algorithm.
However, PPIT_ROOTS has the following limitations:

1. It is impossible to add new concepts to the library
knowledge-base or edit existing ones without the
recompilation of its source code.

2. Library modules are designed for solving only chess
related problems.

3. User, who uses the package, and tries to add new
concepts, should be familiar with programming in
C++ .

The new version of library – PPIT_BASE_V2, is a
generalized version of PPIT_BASE with the following
additional characteristics.
Concepts are more dynamically structured and have
possibility to be loaded dynamically into the agent’s
knowledge-base, without compilation of the agent’s source
code. Having a possibility to dynamically learn new concepts
or to improve the existing knowledge the system will
regularly gain a new knowledge, as new concepts or new
plans. Concepts descriptions are separated from the source
code what is achieved by describing the concepts by scripting
language and the interpreter of that language. This approach
allows insertion of new concepts into the system, although the
representation of already loaded concepts and concepts’
management functionality is not considered yet. We consider
the scripting language interpreter integrated with other parts
of the package and having a functional interface for working
with the concepts store. JavaScript is chosen as a scripting
language. Its interpreters are widely available and its syntax is
rich enough for describing object-oriented concepts.
The process of making knowledge base architecture enough
dynamic for regular acquisition of the knowledge blocks
requires the following reconstructions. Using input devises,
sensors, agents can distinguish world realities from each
other. Instances of the RealObject class in the system memory
(mind) are reflections of world realities. RealObject class can
have as much properties as system sensors can distinguish. In
case of chess game, agent’s sensors distinguish 4 properties:

• Shape – the shapes of world realities
• PositionX – position of the object on the X axis

• PositionY – position of the object on the Y axis
• Color – color of the object

Values of the properties are limited by the game rules and
possible values are accepted in a certain way.
In case of the chess game, world is represented as a chess
board. States of the chess board
(the world), i.e. situations, are
configurations of pieces
(objects) on the chess board.
This means, that situations can
be described by describing the states (values) of the pieces’
attributes at the given time interval.
Agent can change board states by changing the states of the
pieces. States of the pieces are combinations of the values of
its attributes. Let’s call each atomic change of the piece’s state
as an action. Action is associated with the piece, whose
attributes are being changed. Executing the piece’s action
means an atomic change of the piece state.
Experts’ knowledge can be represented as a library of plans
for achieving some goal state from the certain state. This
means that for learning expert knowledge agent should have
possibility to store plans within its knowledge base.
Compositions of the units of the plans are descriptions of
system states and actions of the system properties. Thus, agent
should have possibility to learn descriptions of system states
and objects’ actions. Let’s name these descriptions as
concepts. We define concept learning as a possibility to store
some information about the concepts within the agent’s
memory as a data structures and a possibility to associate that
information with the corresponding realities of the world –
real objects and the actions of real objects. For achieving that
agent should implement 2 procedures FIND and EXECUTE.
The FIND procedure gets the knowledge structure (a concept)
as a parameter and finds the real object corresponding to the
concept. After the object was found it creates an instance of
RealObject class, and fills the attributes’ values with
corresponding attributes values of the found Object. Attribute
values are being loaded into the agent’s memory via its
sensors.
EXECUTE procedure gets a concept and an action
corresponding to the concept as parameters and first FINDs
the object corresponding to the concept, then executes the
action over the loaded instance of the RealObject class.
Using these procedures agent can operate with stored plans
and act depending on them. It is possible to call the
EXECUTE procedure’s internal version, EXECUTE_I, which
changes only attributes of the loaded instance of RealObject
class and doesn't changes the real object's attributes (the state
of the chess board). This function can be used for planning
future events.
In the knowledge-base concepts are represented as instances
of the Concept class. Concept class contains sets for storing
matching rules for the each property of the RealObject class.
Matching rules are pairs of matching functions and possible
values, i.e. arguments for the matching function. As matching
rules for the templates properties, mathematical functions can
be used. The FIND procedure uses attribute matching rules
for finding (matching) real objects corresponding to the
properties. Using these structures it is possible to dynamically
add new concepts by creating new objects of the Concept
class and adding attribute matching rules to it. An instance of
the Concept class can generalize another instance of the
Concept. Generalization means that child concept also uses
properties' rules of the parent concept for matching real
objects. System can automatically check the rule overlapping
and will use only more concrete rules.
The most abstract concept is the Object, which corresponds to
any found real object. The image bellow shows a mechanism
of creating the “Black Pawn” concept:

Templates can have methods which are calculating values of
some properties of templates depending on other template
properties. Using these methods it is possible to do
assumptions for some properties values depending on other
properties’ values.
Actions are represented as a set of rules of how real object’s
attributes can be changed. Within concepts actions are
included as associative arrays in the following format:
{actionName => [(rules for positionX, rules for positionY,
rules for Shape, rules for Color), (….), ….], …}. Each action
name represents a class of actions. For example action Move
is a representation of several possible moves depending on the
figure type. If all child-concepts of some concept have an
action with the same name, then the parent concept also can
have an action with that name, but without description. This
approach is similar to the abstract virtual functions in terms of
OOP. This means that the EXECUTE procedure, in case it
tries to execute Move action over the Figure concept, should
find the child-concept which corresponds to the found real
object and then execute the action, i.e. change the real objects’
attributes depending on the rules.
Another type of knowledge is sets. They are instances of the
Set class. Sets represent all instances of the real objects that
match to some Concept, which correspond to the set. Here
concepts act as templates, for matching objects that
correspond to the set. We say, that set is a parent of another
set, if concept, that corresponds to the parent set is the parent
of the concept of the child set. Sets can be used as arguments
for the IN attributes matching
function. The diagram on the right
shows examples of the sets.
In many cases concepts are being
defined depending on other concepts.
An example of such relational
concepts is a “Neighbor Field”. It is a
field which is near by another field.
“Near by” means that coordinates of
field A and B are matching the
following rules: (|Xa – Xb| = 1 and Ya = Yb) OR (|Ya – Yb| =
1 and Xa = Xb). For supporting relative concepts in the
PPIT_ROOTS_V2, it is possible to use other concepts’
attributes in the attributes’ matching rules of a concept. This
means, that the FIND procedure first should find the inner
concept, and then use the attribute values of found instance of
the RealObject for matching rules of the searched concept. It
is also possible to use concepts’ actions within the matching
rules of other concepts as functions in combination with
attributes of other concepts. Such functions can modify the
state of the found real object and then apply the matching

Positions
PositionX [1..8]
PositionY [1..8]

O b je c ts

L in e

V e rtic a l L in e

rules over the changed values. In such cases EXECUTE_I
procedure is used.
To show how PPIT_ROOTS_V2 agent can learn non-trivial
concepts, let’s step by step organize learning of the “Check”
concept. Our assumptions will not completely correspond to
the chess concepts, but they will be quite similar. Check can
mean that on the board is a King, which is under attack of
another Piece. For describing the «King under attack of
another Piece» concept, we can describe «A Piece is under
attack of another Piece» concept and then extend from it, by
setting the Shape attribute matching rule to the «KING»
value. «Piece is under attack of another piece» means that
Piece’s coordinates are EQUEAL to the Field’s coordinates,
which is IN the «Attacking Fields of another Piece» set. For
an «Attacking Fields» set, as a matching concept «Attacking
Field» concept can be used. «Attacking Field» of the piece is
a field, which coordinates are equal to the Piece's coordinates
after executing Move action over them. So «Attacking Field»
can extend from the «Field» concept and have additional
attribute matching rules.
This means, that by using the concepts' structures and by
executing several FIND and EXECUTE_I procedures in a
chain, it is possible to find if there is a Check situation on the
chessboard, and depending on that, decide the next action of
the agent.
Scripts written using JavaScript are plain text files that can be
loaded by the interpreter at runtime. Already loaded
JavaScript objects can be edited during the program lifetime
(runtime), not only by changing existing attributes values, but
also by adding new attributes and methods. This means, that
concepts which are already in the knowledge-base can be
developed and adopted according to the new needs. In case if
the knowledge-base has to be transmitted between different
agents, concepts can be again serialized to the text file or be
transferred via web. The JSON (JavaScript Object Notation)
lightweight data-interchange format is designed for sending
JavaScript object via web. Therefore, usage of the JavaScript
as a language for representing knowledge concepts will easily
allow agents in the future to interchange and synchronize their
knowledge.
There is a vocabulary of chess concepts which contains about
400 concepts sorted from the simplest ones to the most
complicated. The successful learning of those concepts will
prove the adequacy of the method we used.
For simplifying the learning process of concepts a graphical
editor is planned to be developed. The editor will
automatically generate JavaScript files corresponding to the
administrator commands.
Because of the slower work of the interpreting programs in
comparison with the compiled ones, we consider the speed of
the knowledge management system as a potential problem.
For making the system faster, it is reasonable to compile the
most useful JavaScript objects into the binary format on the
runtime and improve the program speed this way.
As future steps, it is planned development of procedures for
improving the existing knowledge, for example, by
reorganizing associations between existing concepts. The
system is being designed according to this possible
improvement. This means, that dynamic architecture of the
knowledge management subsystem will allow us to use
several algorithms from the machine learning fields.
Automated learning is considered as the next improvement of
the package, and it mainly depends on the existence of
dynamically manageable knowledge structures.

5. CONCLUSION
We have presented a software package PPIT_ROOTS that has
been designed and developed for solving SSRGT class
problems. It utilizes PPIT algorithm and proves its ability to
successfully solve chess problems that are subclass of
SSRGT. We also have listed the main limitations of
PPIT_ROOTS package:

1. Impossibility to add new concepts to the library
knowledge-base or edit existing ones without
recompilation of its source code.

2. Impossibility to solve non-chess related problems.
3. Impossibility to add new concepts by the users who

aren’t familiar with programming and with C++
programming language.

These are limitations for organization of the regular learning
(knowledge acquiring) process. According to that a new
version of the package is being designed and developed,
which uses JavaScript interpreter for representing the
concepts within agents knowledge base. We have shown how
new approach allows adding new concepts without
recompilation of the package’s source code and by that
supports the learning regularity. As a next step we consider a
graphical editor implementation that will allow an easier
mechanism for adding new concepts.

ACKNOWLEDGEMENTS
We would like to express our gratitude to Professor Edward
Pogossian for supervision of the work and to Emma
Danielyan, Arpine Grigoryan, Artem Harutyunyan, Aram
Antonyan for their constructive comments and support.

REFERENCES
[1] J. Frnkranz, "Machine Learning in Games", A Survey
Austrian Research Institute for Artificial Intelligence, Wien,
Austria ,Technical Report OEFAI-TR-2000-31 page 4
[2] S. Kosslyn, "Image and Mind". Cambridge, MA Harvard
University Press 1980
[3] Z. Pylyshyn, "Seeing and Visualizing, It’s Not What You
Think", An Essay On Vision And Visual Imagination,
http://ruccs.rutgers.edu/faculty/pylyshyn.html
[4] E. Pogossian. "Adaptation of Combinatorial Algorithms"
(Russian), Yerevan.,1983, 293 pp.
[5] E. Pogossian, V. Vahradyan, A. Grigoryan, "On
Competing Agents Consistent with Expert Knowledge",
Lecture Notes in Computer Science, AIS-ADM-07: The Intern.
Workshop on Autonomous Intelligent Systems - Agents and
Data Mining, June 5 -7, 2007, St. Petersburg, 11pp.
[6] T. Baghdasaryan, E. Danielyan, E. Pogossian "Supply
Chain Management Strategy Provision by Game Tree
Dynamic Analysis", Fifth International Conference
SBM2006, Sept. 4-8, Sevastopol, 2p.
[7] T. Baghdasaryan "Scripting Language and Design Tool
for Trading Agents Strategy Plans", International Conference
CSIT2007, Yerevan, 5p

