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ABSTRACT 
Complexity and accuracy of prediction are highly dependent 

to input variables of the model. Different methods of input 

variable selection based on correlation analysis and mutual 

information have been widely used to select minimum 

number of input variables. Selection of inputs is in fact a 

linear transformation on available input variables. In this 

paper, nonlinear transformation is used to generate input 

variables for the model. Inputs are generated in a way to have 

maximum dependency to the desired output. These nonlinear 

transformations are created using genetic programming. 

Fitness function of genetic programming is defined based on 

the mutual information between generated input variables and 

the desired output. Definition of fitness function is done in a 

way to increase the rate of convergence of the algorithm. 

Simulations prove the vantage of the proposed method in 

comparison with the input selection algorithm. Prediction of 

EEG with the generated input variables leads to less error in 

comparison with selected inputs. 
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1. INTRODUCTION 
Epilepsy is one of the rifest neurological disorders. It is 

estimated that approximately one percent of the world 

population are affected by epilepsy and also 25 percent of this 

population are not cured with known treatments. Seizures can 

be aborted by targeted therapy, if an accurate prediction of its 

occurrence time is available. Seizure prediction consists of 

two stages, prediction of EEG signal and detection of seizure 

occurrence. The aim of this paper is to improve the accuracy 

of EEG prediction, used in seizure prediction. 

Input variable selection is one of the most important stages in 

modeling and prediction. In most of the modeling problems, 

there are lots of input variables, available. It is obvious that 

the importance of inputs is different and some of them may 

not have a significant relevance to the output of the system. In 

all modeling and prediction problems, models with the least 

possible level of complexity and minimum number of input 

variables are preferable.  

In order to have a model with minimum level of complexity, 

there should be a procedure to select most appropriate input 

variables with less redundancy. Input variable selection 

should be based on a measure that shows the relevance of 

each input to the desired output. Correlation analysis is a 

method that measures the linear relevance between two 

signals. Since nonlinear dependence of signals is not 

considered in correlation analysis it is unable to select best 

inputs. Better selection of input variables is possible using 

more sophisticated methods such as mutual information. 

Mutual information has been widely used to select features 

and input variables in classification and modeling applications 

[1]-[5]. B. Atoufi and C. Lucas in [6] showed the 

effectiveness of input variable selection based on mutual 

information in comparison with correlation analysis. 

These methods only select most appropriate input variables 

between available variables that in prediction applications are 

the lagged values of time series.  

Selection of input variables from a set of available inputs is 

clearly a special kind of linear transformation. An extension 

to this process is to use nonlinear transformation to generate 

inputs from the set of available variables. Input variables 

generated by the nonlinear transformation can lead to more 

accurate predictions and models with less complexity. This 

nonlinear many to one transformation can be found using 

genetic programming. In this paper the local linear neuro 

fuzzy model [7] is used as the model for EEG prediction. 

This paper is organized as follows. Section 2 describes mutual 

information and its estimation method. Simple method of 

input variable selection is also introduced in this section. 

Section 3 introduces genetic programming and its application 

in this paper. Main aspects of local linear neuro fuzzy 

modeling are discussed in section 4. Section 5 presents the 

simulation results and finally the concluding remarks are 

discussed in section 6. 

 

2. Mutual Information 

2.1. Definition of Mutual Information 
Mutual information is defined based on the Shannon Entropy 

[8] to measure the dependency of two random signals.  
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where H(X), H(X|Y) and H(X;Y) are the entropy, conditional 

entropy and joint entropy of  X and Y, respectively. According 

to [8] entropy and joint entropy are defined as follows: 
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where PX,Y(x,y) and PX(x) and PY(y) are the joint probability 

density function and marginal probability density functions of 

X and Y, respectively. By substituting (2), (3) and (4) into (1) 

mutual information of X and Y is obtained. 
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2.2. Estimating Mutual Information 
In order to compute mutual information, first the probability 

density functions should be estimated using PDF estimation 

methods [9], [10] and then mutual information can be 

computed based on the estimated PDFs. Other methods have 

been proposed that directly estimate the mutual information. 

In this paper, mutual information is estimated directly using 

the method proposed in [11], that estimate entropy based on 

the average distance to the k-nearest neighbors. 

Assuming zi = (xi,yi) i = 1, 2,.. ,N are N  data points of  a 

random variable Z = (X,Y) with the density function PX,Y(x,y) 

where X and Y are random vectors in Rn. Distance of each data 

point, zi, to other points is computed using maximum norm. 
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zk(i) = (xk(i),yk(i)) is defined as the k-th  nearest neighbor of zi 

with respect to the maximum norm, where k is a fixed 

positive integer. Distance of each data point from its k-th 

nearest neighbor is defined as follows: 
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where  is the Digamma function. 

In order to have a correct estimation, k should be selected 

carefully. Using a small value for k, the estimator will have a 

large variance and a small bias, while large values of k lead to 

a small variance and a large bias [12]. In this paper the value 

of k is selected to be 6. 

 

2.3. Input Variable Selection 
Battiti in [1] proposed an algorithm to select most relevant 

input variables among available features. The aim of this 

algorithm is to select a set of input variables that have 

maximum relevance to the output and minimum redundancy 

among each other. This algorithm is as follows: 

1) Initialization: Set L to „initial set of n inputs‟ and S to 

„empty set‟. T is the output of the model. 

2) Computation of the mutual information with the output: 

Compute I(T;l) for each input l ϵ L.  

3) Choice of the first input: Find the input l that maximize 

I(T;l). Set { }L L l  and { }S l  

4) Greedy selection: Repeat until desired number of input 

variables are selected: 

a. Computation of mutual information between 

variables: For all couple of variables l ϵ L and s ϵ 

S compute I(l;s). 

b. Selection of the next input: choose the input l that 

maximize ( ; ) ( ; )

s S

I T l I l s
S




  ; Set 

{ }L L l   and { }S S l  

5) Output the set of S containing the selected input 

variables. 

Redundancy between selected input variables can be 

controlled with β. If β decreases, the importance of 

dependency between selected inputs decreases. 

 

3. Genetic Programming 
Genetic programming (GP) is an evolutionary algorithm that 

searches for optimum structure of a system [13]. GP evolves 

systems that are represented by tree structures. Every tree 

consists of terminal nodes that are input variables of the 

system and functional nodes. A useful toolbox of genetic 

programming has been developed in [14]. 

GP, similar to genetic algorithm has genetic operators to build 

new individuals. Crossover, mutation and swap mutation are 

some of genetic operators that are used in GP. Crossover 

operator randomly selects two subtrees from parents and 

swaps them to create two children. Mutation operator 

substitutes a randomly selected subtree of an individual with a 

new randomly created node-branch. In swap mutation two 

random subtrees are chosen from an individual and swapped.  

Selecting correct probabilities of genetic operators is an 

important concern in evolutionary algorithms. Mutation is the 

ability of the algorithm to explore new points in search space 

while crossover operator helps the algorithm to exploit points 

with better fitness function based on individuals in the 

population. The evolutionary algorithm can converge to 

global optimum point if there is a good balance between 

exploration and exploitation ability. In this paper crossover 

and mutation probabilities are tuned adaptively during the 

algorithm based on the method proposed in [15]. Operator 

probabilities are adjusted based on the performance and their 

effectiveness in generating individuals with better fitness. A 

credit is assigned to each offspring based on its fitness in 

comparison with the best and worst fitness of the population 

of its parents. Probability of each operator is computed as the 

average of credits of individuals that are created using that 

operator. 

In genetic programming the complexity of individuals may 

grow without any significant improvement in fitness function. 

This phenomenon is known as bloat. The simplest method of 

avoiding bloat is to set a maximum depth size on trees [13]. 

Bloat can also be avoided by setting a measure of complexity 

into the fitness of each individual [16]. Using this method, the 

fitness of the individual is decreased with the growth of its 

depth. Using dynamic maximum tree depth instead of fixed 

limit is another way that effectively controls bloat [17]. This 

method actually has two kinds of limit on the depth size; 

dynamic and static limits. In this method, depth of each 

individual can grow if there is an improvement in fitness 

function until the depth reaches the static limit. When the 

depth of individuals reaches to the static limit, they cannot 

grow any further. In this paper dynamic depth size method is 

used. Dynamic and static limits on depth size are set to 10 and 

30, respectively. 

In this paper genetic programming is used to find a nonlinear 

transformation from available input variables to create a set of 

inputs that have maximum relevance to the desired output. 

The procedure described in part 3 of section 2 is done while in 

each iteration, an input variable is created using genetic 

programming. Fitness function for genetic programming can 

be defined as follows. 
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while l is the created feature and s is the set of previously 

generated input variables. In order to increase the rate of 

convergence of the algorithm and creating trees with a 

predefined minimum level of complexity the fitness function 

(10) is revised as follows. 
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where d is the depth of the individual. It is obvious that fitness 

value is increased with increasing the depth size of 

individuals. Using this fitness function, the algorithm will 

converge quickly to trees with at least depth size equals to 10. 

Increasing depth size of trees to more than 10 does not have 

any direct effect in fitness function. After guiding the 

algorithm to generate trees with a minimum level of 

complexity it naturally selects trees that lead to greater mutual 

information. In fact, this kind of definition of fitness function 

increases the rate of convergence of the algorithm. 

Selection of termination criterion is another important part of 

genetic programming. Generated input variables are used in 

neurofuzzy networks that should have a good level of 

generalization. In other words networks that are trained with 

created input variables should have a good performance for 

both training and test datasets. So the nonlinear 

transformation that is created using GP should lead to input 

variables with high dependence between input and output 

variables for both test and training datasets. In this algorithm 

stop criterion is selected such that the nonlinear function 

resulted from the evolution have a good generalization for the 

test dataset. Every decrement in fitness function for test data 

should be compensated in next 10 iterations and if it does not 

decrease to a level less than its value before the increment, the 

algorithm will be terminated.  

 

4. Neuro Fuzzy Modeling 
The local linear model tree (LoLiMoT) proposed in [7] is a 

neuro fuzzy model with one hidden layer and a linear neuron 

in the output layer. Neurons in hidden layer divide the input 

space into small linear subspaces. The output of the locally 

linear neurons in hidden layer is a weighted sum of input 

variables, multiplied by the normalized value of validity 

function. 
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where u = [u1, u2, …, up] is the input of the network and M is 

the number of neurons in hidden layer. The validity functions 

are typically selected as normalized Gaussians. 

                       

1

( ) ( ) ( )i

M

i j

j

u u u



                          (14) 

     1

22

1

2 2

( )( )1
( ) exp{ ( ... )}

2

p

p p

p ii

i

i i

u cu c
u


    

 
         (15) 

The fundamental approach with the locally linear neuro fuzzy 

model is dividing the input space into small linear subspaces 

with fuzzy validity functions.  

All linear parameters of the model are estimated using least 

squares optimization. The parameter vector consist of M(p+1) 

elements 
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Regression matrix X for N samples is: 
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Using least square optimization, the estimation of parameter 

vector is obtained as follows: 
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One of the most important vantages of this model is that the 

number of local linear models (LLM) in hidden layer is 

selected during the training process. In each iteration the 

worst local linear model is selected to be divided to two 

LLMs. All possible divisions in p dimensional input space are 

evaluated and the best division is selected. After creation of 

new LLM the fuzzy validity functions of the network should 

be updated. Centers are set to centers of new hyper-rectangles 

and standard deviations are set to a proportion of the size of 

hyper-rectangles as follows. 
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where Δij is the extension of hyper-rectangle of i-th LLM in 

dimension uj. 

Creation of new LLMs is continued until a termination 

criterion is met. Termination criterion is defined in a way to 

prevent the network to be over-trained. Overtraining is a 

situation where the trained network becomes an expert for 

training data and the index of error for test data increases. 

Termination criterion is defined in a similar way of stop 

condition in GP that was described in section 3.  

Index of error in this paper is normalized mean square of error 

(NMSE) that is defined as follows. 
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where y, ŷ and y are observed, predicted and average of 

observed data points, respectively. 

 

5. Simulation Results 
The effectiveness of the proposed method is investigated in 

prediction of EEG signal. In this paper the dataset for 3rd 

international workshop on epileptic seizure prediction is used. 

EEG signals are available from [18]. First channel of EEG of 

second patient is selected to create the test and training 

datasets. 20 previous values of this time series are selected to 

be potential input variables to predict the value of time series 

in 1000 steps ahead. Prediction is done using three different 

methods.  

In first method, all of 20 lags of time series are used as the 

input variables of the predictor. This method needs complex 

computations to design neuro fuzzy network. 

In second method input variables are selected from the set of 

available inputs based on the method described in part 3 of 

section 2. Table I shows the selected input variable in each 

iteration and the NMSE on test and training datasets that is 



resulted using selected input variables. This table also shows 

the optimum number of LLMs before the network becomes 

overt-rained. 

Table I. Results of feature selection method using mutual information 

Number of 

input 

variables 

Input 

variable 

NMSE of 

Training 

data 

NMSE of 

Test data 

1 6 0.2159 0.2343 

2 2 0.1882 0.1899 

3 20 0.1841 0.1856 

4 17 0.167 0.1771 

5 11 0.1656 0.1777 

6 16 0.1643 0.1759 

7 8 0.1617 0.1851 

8 5 0.1612 0.1846 

9 1 0.1602 0.1849 

10 7 0.1588 0.1859 

11 14 0.1674 0.1859 

12 12 0.1665 0.186 

13 18 0.1745 0.1987 

14 15 0.1507 0.1887 

15 9 0.1576 0.1857 

16 3 0.1571 0.1864 

17 13 0.1568 0.1861 

18 4 0.1621 0.1913 

19 19 0.1646 0.1913 

20 10 0.1559 0.1781 

The process of input selection in this algorithm is terminated 

similar to the termination of LoLiMoT training. It is seen in 

table I that after selection of 6th input variable, the minimum 

NMSE for test data is achieved so this six input variables are 

selected as the final inputs. 

In third method, genetic programming is used to generate 

input variables. Every available input variable is normalized 

to lie between -1 and 1. Population size of genetic 

programming is set to 100. Other parameters of genetic 

programming are set as described in section 3. Table II shows 

the results of applying this method. 

Table II. Results of prediction with input variables generated using 

GP 

Number of input 

variables 
NMSE of Test data 

1 0.1746 

2 0.1647 

Table II shows that using two input variables that are created 

using genetic programming leads to better results than using 

seven input variables that are selected based on mutual 

information.  

Table III shows the result of comparison between three 

different methods used for EEG prediction. 

Table III. Comparison of three methods for EEG prediction 

 Method 

Number of 

input 

variables 

NMSE of 

Test data 

Using all input variables 20 0.1781 

Input selection based on MI 6 0.1759 

Input generation using GP 2 0.1647 

Table III shows that as it is stated before, using all available 

input variables decreases the efficiency of the model. It is also 

shown that generating input variable using genetic 

programming performs better than the simple selection of 

input variables that is a special kind of linear transformation. 

6. Conclusion 
In this paper a new method of feature conditioning is 

proposed to predict the EEG signal. Input variables are 

created using a nonlinear transformation on lagged values of 

the time series. Genetic programming is used to find the 

nonlinear transformation. Fitness function of GP is defined 

based on mutual information of generated input variable and 

the desired output. Simulations prove the vantage of this 

method over the input selection method.  
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