

Input Variable Generation for Long Term Prediction of EEG

Signal Using Genetic Programming

 Hossein Soleimani-B.

Control and Intelligent Processing

Center of Excellence, Electrical and

Computer Eng. Department,

University of Tehran, Tehran, Iran

e-mail: h.soleimani@ece.ut.ac.ir

Caro Lucas

Control and Intelligent Processing

Center of Excellence, Electrical and

Computer Eng. Department,

University of Tehran, Tehran, Iran

e-mail: lucas@ipm.ir

ABSTRACT
Complexity and accuracy of prediction are highly dependent

to input variables of the model. Different methods of input

variable selection based on correlation analysis and mutual

information have been widely used to select minimum

number of input variables. Selection of inputs is in fact a

linear transformation on available input variables. In this

paper, nonlinear transformation is used to generate input

variables for the model. Inputs are generated in a way to have

maximum dependency to the desired output. These nonlinear

transformations are created using genetic programming.

Fitness function of genetic programming is defined based on

the mutual information between generated input variables and

the desired output. Definition of fitness function is done in a

way to increase the rate of convergence of the algorithm.

Simulations prove the vantage of the proposed method in

comparison with the input selection algorithm. Prediction of

EEG with the generated input variables leads to less error in

comparison with selected inputs.

Keywords
Input Variable Generation, Mutual Information, Genetic

Programming, Long Term Prediction, EEG

1. INTRODUCTION
Epilepsy is one of the rifest neurological disorders. It is

estimated that approximately one percent of the world

population are affected by epilepsy and also 25 percent of this

population are not cured with known treatments. Seizures can

be aborted by targeted therapy, if an accurate prediction of its

occurrence time is available. Seizure prediction consists of

two stages, prediction of EEG signal and detection of seizure

occurrence. The aim of this paper is to improve the accuracy

of EEG prediction, used in seizure prediction.

Input variable selection is one of the most important stages in

modeling and prediction. In most of the modeling problems,

there are lots of input variables, available. It is obvious that

the importance of inputs is different and some of them may

not have a significant relevance to the output of the system. In

all modeling and prediction problems, models with the least

possible level of complexity and minimum number of input

variables are preferable.

In order to have a model with minimum level of complexity,

there should be a procedure to select most appropriate input

variables with less redundancy. Input variable selection

should be based on a measure that shows the relevance of

each input to the desired output. Correlation analysis is a

method that measures the linear relevance between two

signals. Since nonlinear dependence of signals is not

considered in correlation analysis it is unable to select best

inputs. Better selection of input variables is possible using

more sophisticated methods such as mutual information.

Mutual information has been widely used to select features

and input variables in classification and modeling applications

[1]-[5]. B. Atoufi and C. Lucas in [6] showed the

effectiveness of input variable selection based on mutual

information in comparison with correlation analysis.

These methods only select most appropriate input variables

between available variables that in prediction applications are

the lagged values of time series.

Selection of input variables from a set of available inputs is

clearly a special kind of linear transformation. An extension

to this process is to use nonlinear transformation to generate

inputs from the set of available variables. Input variables

generated by the nonlinear transformation can lead to more

accurate predictions and models with less complexity. This

nonlinear many to one transformation can be found using

genetic programming. In this paper the local linear neuro

fuzzy model [7] is used as the model for EEG prediction.

This paper is organized as follows. Section 2 describes mutual

information and its estimation method. Simple method of

input variable selection is also introduced in this section.

Section 3 introduces genetic programming and its application

in this paper. Main aspects of local linear neuro fuzzy

modeling are discussed in section 4. Section 5 presents the

simulation results and finally the concluding remarks are

discussed in section 6.

2. Mutual Information

2.1. Definition of Mutual Information
Mutual information is defined based on the Shannon Entropy

[8] to measure the dependency of two random signals.

(,) () (|) () (|)

() () (;)

I X Y H X H X Y H Y H Y X

H X H Y H X Y

   

  
 (1)

where H(X), H(X|Y) and H(X;Y) are the entropy, conditional

entropy and joint entropy of X and Y, respectively. According

to [8] entropy and joint entropy are defined as follows:

 () () log ()X X

x

H X P x P x dx  (2)

 () () log ()Y Y

y

H Y P y P y dy  (3)

 , ,(;) (,) log (,)X Y X Y

x y

H X Y P x y P x y dxdy   (4)

where PX,Y(x,y) and PX(x) and PY(y) are the joint probability

density function and marginal probability density functions of

X and Y, respectively. By substituting (2), (3) and (4) into (1)

mutual information of X and Y is obtained.

,

,

(,)
(;) (,) log

() ()

X Y

X Y

X Yx y

P x y
I X Y P x y dxdy

P x P y
   (5)

2.2. Estimating Mutual Information
In order to compute mutual information, first the probability

density functions should be estimated using PDF estimation

methods [9], [10] and then mutual information can be

computed based on the estimated PDFs. Other methods have

been proposed that directly estimate the mutual information.

In this paper, mutual information is estimated directly using

the method proposed in [11], that estimate entropy based on

the average distance to the k-nearest neighbors.

Assuming zi = (xi,yi) i = 1, 2,.. ,N are N data points of a

random variable Z = (X,Y) with the density function PX,Y(x,y)

where X and Y are random vectors in Rn. Distance of each data

point, zi, to other points is computed using maximum norm.

2 2

max{ , }, 1, 2,...,i j i j i jz z x x y y j N


     (6)

zk(i) = (xk(i),yk(i)) is defined as the k-th nearest neighbor of zi

with respect to the maximum norm, where k is a fixed

positive integer. Distance of each data point from its k-th

nearest neighbor is defined as follows:

 ()2i i k iz z


   (7)

 () ()2 2
2 , 2

x y

i i k i i i k ix x y y      (8)

x
in and

y
in are the number of data points with

2
2

x

i j ix x   and
2

2
y

i j iy y   . Finally the mutual

information of X and Y is estimated.

1

1 1ˆ(;) () [() ()] ()

N
x y

i i

i

I X Y k n n N
k N



       (9)

where  is the Digamma function.

In order to have a correct estimation, k should be selected

carefully. Using a small value for k, the estimator will have a

large variance and a small bias, while large values of k lead to

a small variance and a large bias [12]. In this paper the value

of k is selected to be 6.

2.3. Input Variable Selection
Battiti in [1] proposed an algorithm to select most relevant

input variables among available features. The aim of this

algorithm is to select a set of input variables that have

maximum relevance to the output and minimum redundancy

among each other. This algorithm is as follows:

1) Initialization: Set L to „initial set of n inputs‟ and S to

„empty set‟. T is the output of the model.

2) Computation of the mutual information with the output:

Compute I(T;l) for each input l ϵ L.

3) Choice of the first input: Find the input l that maximize

I(T;l). Set { }L L l  and { }S l

4) Greedy selection: Repeat until desired number of input

variables are selected:

a. Computation of mutual information between

variables: For all couple of variables l ϵ L and s ϵ

S compute I(l;s).

b. Selection of the next input: choose the input l that

maximize (;) (;)

s S

I T l I l s
S




  ; Set

{ }L L l  and { }S S l

5) Output the set of S containing the selected input

variables.

Redundancy between selected input variables can be

controlled with β. If β decreases, the importance of

dependency between selected inputs decreases.

3. Genetic Programming
Genetic programming (GP) is an evolutionary algorithm that

searches for optimum structure of a system [13]. GP evolves

systems that are represented by tree structures. Every tree

consists of terminal nodes that are input variables of the

system and functional nodes. A useful toolbox of genetic

programming has been developed in [14].

GP, similar to genetic algorithm has genetic operators to build

new individuals. Crossover, mutation and swap mutation are

some of genetic operators that are used in GP. Crossover

operator randomly selects two subtrees from parents and

swaps them to create two children. Mutation operator

substitutes a randomly selected subtree of an individual with a

new randomly created node-branch. In swap mutation two

random subtrees are chosen from an individual and swapped.

Selecting correct probabilities of genetic operators is an

important concern in evolutionary algorithms. Mutation is the

ability of the algorithm to explore new points in search space

while crossover operator helps the algorithm to exploit points

with better fitness function based on individuals in the

population. The evolutionary algorithm can converge to

global optimum point if there is a good balance between

exploration and exploitation ability. In this paper crossover

and mutation probabilities are tuned adaptively during the

algorithm based on the method proposed in [15]. Operator

probabilities are adjusted based on the performance and their

effectiveness in generating individuals with better fitness. A

credit is assigned to each offspring based on its fitness in

comparison with the best and worst fitness of the population

of its parents. Probability of each operator is computed as the

average of credits of individuals that are created using that

operator.

In genetic programming the complexity of individuals may

grow without any significant improvement in fitness function.

This phenomenon is known as bloat. The simplest method of

avoiding bloat is to set a maximum depth size on trees [13].

Bloat can also be avoided by setting a measure of complexity

into the fitness of each individual [16]. Using this method, the

fitness of the individual is decreased with the growth of its

depth. Using dynamic maximum tree depth instead of fixed

limit is another way that effectively controls bloat [17]. This

method actually has two kinds of limit on the depth size;

dynamic and static limits. In this method, depth of each

individual can grow if there is an improvement in fitness

function until the depth reaches the static limit. When the

depth of individuals reaches to the static limit, they cannot

grow any further. In this paper dynamic depth size method is

used. Dynamic and static limits on depth size are set to 10 and

30, respectively.

In this paper genetic programming is used to find a nonlinear

transformation from available input variables to create a set of

inputs that have maximum relevance to the desired output.

The procedure described in part 3 of section 2 is done while in

each iteration, an input variable is created using genetic

programming. Fitness function for genetic programming can

be defined as follows.

 1
(;) (;)

s S

F I T l I l s
S



   (10)

while l is the created feature and s is the set of previously

generated input variables. In order to increase the rate of

convergence of the algorithm and creating trees with a

predefined minimum level of complexity the fitness function

(10) is revised as follows.

 1 min(,10)
(;) (;)

10
s S

d
F I T l I l s

S


   (11)

where d is the depth of the individual. It is obvious that fitness

value is increased with increasing the depth size of

individuals. Using this fitness function, the algorithm will

converge quickly to trees with at least depth size equals to 10.

Increasing depth size of trees to more than 10 does not have

any direct effect in fitness function. After guiding the

algorithm to generate trees with a minimum level of

complexity it naturally selects trees that lead to greater mutual

information. In fact, this kind of definition of fitness function

increases the rate of convergence of the algorithm.

Selection of termination criterion is another important part of

genetic programming. Generated input variables are used in

neurofuzzy networks that should have a good level of

generalization. In other words networks that are trained with

created input variables should have a good performance for

both training and test datasets. So the nonlinear

transformation that is created using GP should lead to input

variables with high dependence between input and output

variables for both test and training datasets. In this algorithm

stop criterion is selected such that the nonlinear function

resulted from the evolution have a good generalization for the

test dataset. Every decrement in fitness function for test data

should be compensated in next 10 iterations and if it does not

decrease to a level less than its value before the increment, the

algorithm will be terminated.

4. Neuro Fuzzy Modeling
The local linear model tree (LoLiMoT) proposed in [7] is a

neuro fuzzy model with one hidden layer and a linear neuron

in the output layer. Neurons in hidden layer divide the input

space into small linear subspaces. The output of the locally

linear neurons in hidden layer is a weighted sum of input

variables, multiplied by the normalized value of validity

function.

0 1 21 2

ˆ ...
pi i i i i py u u u      (12)

1

ˆ ˆ ()

M

i i

i

y y u



  (13)

where u = [u1, u2, …, up] is the input of the network and M is

the number of neurons in hidden layer. The validity functions

are typically selected as normalized Gaussians.

1

() () ()i

M

i j

j

u u u



    (14)

 1

22

1

2 2

()()1
() exp{ (...)}

2

p

p p

p ii

i

i i

u cu c
u


    

 
 (15)

The fundamental approach with the locally linear neuro fuzzy

model is dividing the input space into small linear subspaces

with fuzzy validity functions.

All linear parameters of the model are estimated using least

squares optimization. The parameter vector consist of M(p+1)

elements

0 1 0 1 0 11 1 1 2 2 2[...]

p p p

T

M M M           (16)

Regression matrix X for N samples is:

 1 2[...]NX X X X

1

1

1

((1)) (1) ((1)) (1) ((1))

((2)) (2) ((2)) (2) ((2))

(()) () (()) () (())

i i p i

i i p i

i

i i p i

u u u u u

u u u u u
X

u N u N u N u N u N

  

  


  

 
 
 
 
 
 
 

(17)

Using least square optimization, the estimation of parameter

vector is obtained as follows:

1ˆ ()

T T
X X X y


  (18)

One of the most important vantages of this model is that the

number of local linear models (LLM) in hidden layer is

selected during the training process. In each iteration the

worst local linear model is selected to be divided to two

LLMs. All possible divisions in p dimensional input space are

evaluated and the best division is selected. After creation of

new LLM the fuzzy validity functions of the network should

be updated. Centers are set to centers of new hyper-rectangles

and standard deviations are set to a proportion of the size of

hyper-rectangles as follows.

1

3
ij ij   (19)

where Δij is the extension of hyper-rectangle of i-th LLM in

dimension uj.

Creation of new LLMs is continued until a termination

criterion is met. Termination criterion is defined in a way to

prevent the network to be over-trained. Overtraining is a

situation where the trained network becomes an expert for

training data and the index of error for test data increases.

Termination criterion is defined in a similar way of stop

condition in GP that was described in section 3.

Index of error in this paper is normalized mean square of error

(NMSE) that is defined as follows.

2

1

2

1

NMSE

ˆ()

()

n

i

n

i

y y

y y














 (20)

where y, ŷ and y are observed, predicted and average of

observed data points, respectively.

5. Simulation Results
The effectiveness of the proposed method is investigated in

prediction of EEG signal. In this paper the dataset for 3rd

international workshop on epileptic seizure prediction is used.

EEG signals are available from [18]. First channel of EEG of

second patient is selected to create the test and training

datasets. 20 previous values of this time series are selected to

be potential input variables to predict the value of time series

in 1000 steps ahead. Prediction is done using three different

methods.

In first method, all of 20 lags of time series are used as the

input variables of the predictor. This method needs complex

computations to design neuro fuzzy network.

In second method input variables are selected from the set of

available inputs based on the method described in part 3 of

section 2. Table I shows the selected input variable in each

iteration and the NMSE on test and training datasets that is

resulted using selected input variables. This table also shows

the optimum number of LLMs before the network becomes

overt-rained.

Table I. Results of feature selection method using mutual information

Number of

input

variables

Input

variable

NMSE of

Training

data

NMSE of

Test data

1 6 0.2159 0.2343

2 2 0.1882 0.1899

3 20 0.1841 0.1856

4 17 0.167 0.1771

5 11 0.1656 0.1777

6 16 0.1643 0.1759

7 8 0.1617 0.1851

8 5 0.1612 0.1846

9 1 0.1602 0.1849

10 7 0.1588 0.1859

11 14 0.1674 0.1859

12 12 0.1665 0.186

13 18 0.1745 0.1987

14 15 0.1507 0.1887

15 9 0.1576 0.1857

16 3 0.1571 0.1864

17 13 0.1568 0.1861

18 4 0.1621 0.1913

19 19 0.1646 0.1913

20 10 0.1559 0.1781

The process of input selection in this algorithm is terminated

similar to the termination of LoLiMoT training. It is seen in

table I that after selection of 6th input variable, the minimum

NMSE for test data is achieved so this six input variables are

selected as the final inputs.

In third method, genetic programming is used to generate

input variables. Every available input variable is normalized

to lie between -1 and 1. Population size of genetic

programming is set to 100. Other parameters of genetic

programming are set as described in section 3. Table II shows

the results of applying this method.

Table II. Results of prediction with input variables generated using

GP

Number of input

variables
NMSE of Test data

1 0.1746

2 0.1647

Table II shows that using two input variables that are created

using genetic programming leads to better results than using

seven input variables that are selected based on mutual

information.

Table III shows the result of comparison between three

different methods used for EEG prediction.

Table III. Comparison of three methods for EEG prediction

 Method

Number of

input

variables

NMSE of

Test data

Using all input variables 20 0.1781

Input selection based on MI 6 0.1759

Input generation using GP 2 0.1647

Table III shows that as it is stated before, using all available

input variables decreases the efficiency of the model. It is also

shown that generating input variable using genetic

programming performs better than the simple selection of

input variables that is a special kind of linear transformation.

6. Conclusion
In this paper a new method of feature conditioning is

proposed to predict the EEG signal. Input variables are

created using a nonlinear transformation on lagged values of

the time series. Genetic programming is used to find the

nonlinear transformation. Fitness function of GP is defined

based on mutual information of generated input variable and

the desired output. Simulations prove the vantage of this

method over the input selection method.

REFERENCES
[1] R. Battiti, “Using mutual information for selecting features in

supervised neural network,” IEEE Trans. On Neural Networks,

vol. 5, pp. 537-550, 1994

[2] A. Al-Ani, M. Deriche, “An optimal feature selection technique

using the concept of mutual information,” Int. Symposium on

Signal Processing and its Applications (ISSPA), Kuala lumpar,

Malaysia, 2001, pp. 477-480.

[3] N. Kwak, C. H. Choi, “Input feature selection for classification

problems,” IEEE Trans. Neural Networks, vol. 13, pp. 143-159,

2002.

[4] M. M. Rezaei Yousefi, M. Mirmomeni, C. Lucas, “Input

variable selection using mutual information for neuro fuzzy

modeling with application to time series forecasting,” in proc.

International Joint Conference on Neural Networks, Orlando

FL, 2007, pp. 1121-1126.

[5] A. H. Vahabie, M. M. Rezaei Yousefi, B. N. Araabi, C. Lucas,

“Mutual information based input selection in neuro-fuzzy

modeling for short term load forecasting of iran national power

system,” in proc IEEE International Conference on Control and

Automation, Guangzhou, 2007, pp. 2710-2715.

[6] B. Atoufi, C. Lucas, A. Kalhor, M. M. Rezaei Yousefi,

“Channel selection in EEG prediction: linear and nonlinear

approach,” , unpublished

[7] O. Nelles, Nonlinear System Identification, Springer Verlag,

Berlin, 2001

[8] C. E. Shannon, “A mathematical theory for communication,”

The Bell System Technical, vol. 27, pp. 379–423, 623–656,

1948.

[9] D.W. Scott, Multivariable Density Estimation: Theory, Practice,

and Visualization, New York: John Wiley, 1992.

[10] T. Lan, D. Erdogmus, U. Ozertem, Y. Huang, “Estimating

mutual information using Gaussian mixture density model for

feature ranking and selection”, in proc. International Joint

Conference on Neural Networks, Vancouver, 2006, pp. 5034 -

5039

[11] A. Kraskov, H. Stögbauer, and P. Grassberger, “Estimating

mutual information,” Physics. Review E., vol. 69, 066138, 2004.

[12] H. Stogbauer, A. Kraskov, S. A. Astakhof, P. Grassberg, “Least

dependent component analysis based on mutual information”,

Physics. Review E., vol. 70, 066123, 2004

[13] J. R. Koza, Genetic Programming: On Programming of

Computers by means of Natural Selection. Cambridge, MA:

MIT Press, 1992.

[14] E. William, J. Northern, “Genetic programming lab (GPLab)

tool set version 3.0,” in proc. IEEE Region 5 Conference,

Kansas City, 2008, pp. 1-8

[15] L. Davis, “Adaptive operator probabilities in genetic

algorithms,” in proc. 3rd International conference on genetic

algorithms, George Mason University, United States, pp. 61-69,

1989

[16] H. Etemadi, A. A. Anvary Rostamy, H. F. Dehkordi, “A genetic

programming model for bankruptcy prediction: empirical

evidence from Iran,” Expert Systems with Applications, vol. 36,

pp. 3199-3207, 2009

[17] S. Silva, J. Almeida, “Dynamic maximum tree depth – a simple

technique for avoiding bloat in tree-based GP”, Lecture Notes in

Computer Science (including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics) vol.

2724, pp. 1776-1787, 2003

[18] http://epilepsy.uni-freiburg.de/freiburg-seizure-prediction-

project/eeg-database

