Bio-Inspired Optimization Strategies: A Survey

Nuria Gémez Blas

Escuela Universitaria de Informatica
Universidad Politécnica de Madrid
28031 Madrid, Spain

e-mail: ngomez @eui.upm.es

ABSTRACT

This paper provides a brief survey about optimization strate-
gies from a biological point of view. There exists a clear
difference between cooperative and competitive strategies.
The former ones are based on the swarm colonies, in which
all individuals share its knowledge about the goal in order
to pass such information to other individuals to get opti-
mum solution. The latter ones are based on competitive
learning, that is, individuals can die and new individuals are
created combining information of alive one; or are based on
molecular/celular behaviour passing information from one
structure to another. Some results, concerning grammatical
swarm, obtained using the GEVA simulator are shown.

Keywords

Computer science, artificial intelligence, natural computing.

1. INTRODUCTION

Natural sciences, and especially biology, represented a rich
source of modelling paradigms. Well-defined areas of ar-
tificial intelligence (genetic algorithms, neural networks),
mathematics, and theoretical computer science (L systems,
DNA computing) are massively influenced by the behaviour
of various biological entities and phenomena. In the last
decades or so, new emerging fields of so-called natural com-
puting identify new (unconventional) computational para-
digms in different forms. There are attempts to define and
investigate new mathematical or theoretical models inspired
by nature, as well as investigations into defining program-
ming paradigms that implement computational approaches
suggested by biochemical phenomena. Especially since Adle-
man’s experiment, these investigations received a new per-
spective. One hopes that global system-level behaviour may
be translated into interactions of a myriad of components
with simple behaviour and limited computing and commu-
nication capabilities that are able to express and solve, via
various optimizations, complex problems otherwise hard to
approach.

A number of computational paradigms, inspired or gleaned
from biochemical phenomena, are becoming of growing in-
terest building a wealth of models, called generically Molec-
ular Computing. New advances in, on the one hand, molec-
ular and theoretical biology, and on the other hand, mathe-
matical and computational sciences promise to make it pos-
sible in the near future to have accurate systemic models of
complex biological phenomena.

*Partially supported by projects CCG08-UAM TIC-4425-
2009 and TEC2007-68065-C03-02.

Luis Fernando de Mingo

Escuela Universitaria de Informatica
Universidad Politécnica de Madrid
28031 Madrid, Spain

e-mail: Ifmingo@eui.upm.es

Juan Castellanos Pefiuela

Facultad de Informatica
Universidad Politécnica de Madrid
28660 Madrid, Spain

e-mail: jcastellanos @fi.upm.es

2. NATURAL COMPUTATION

Natural computation [19], also called natural computing, is
the field of research that works with computational tech-
niques inspired in part by nature and natural systems. The
aim of such research is to develop new computational tools
(in software, hardware or wet-ware) for solving complex,
usually conventionally-hard problems. This often leads to
the synthesis of natural patterns, behaviours and organisms,
and may result in the design of novel computing systems
that use natural media with which to compute. Natural
computing can be divided into three main branches:

e Computing inspired by nature (also called biologically
inspired computing): This makes use of nature as in-
spiration for the development of problem solving tech-
niques. The main idea of this branch is to develop
computational tools (algorithms) by taking inspiration
from nature for the solution of complex problems;

e The simulation and emulation of nature by means of
computing: This is basically a synthetic process aimed
at creating patterns, forms, behaviours, and organisms
that (do not necessarily) resemble life-as-we-know-it.
Its products can be used to mimic various natural phe-
nomena, thus increasing our understanding of nature
and insights about computer models; and

e Computing with natural materials: This corresponds
to the use of natural materials to perform computa-
tion, thus constituting a true novel computing paradigm
that comes to substitute or supplement the current
silicon-based computers.

2.1 P Systems

P-systems represent a class of distributed and parallel com-
puting devices of a biological type that was introduced in [5,
4] which are included in the wider field of cellular comput-
ing. Several variants of this model have been investigated
and the literature on the subject is now rapidly growing.
The main results in this area show that P-systems are a
very powerful and efficient computational model [7, 9, §].
There are variants that might be classified according to dif-
ferent criteria. They may be regarded as language gener-
ators or acceptors, working with strings or multi-sets, de-
veloping synchronous or asynchronous computation. Two
main classes of P-systems can be identified in the area of
membrane computing [6]: cell-like P-systems and tissue-like
P-systems. The former type is inspired by the internal or-
ganization of living cells with different compartments and
membranes hierarchically arranged; formally this structure
is associated with a tree. Tissue P-systems have been mo-
tivated by the structure and behaviour of multi-cellular or-
ganisms where they form a multitude of different tissues per-
forming various functions [6]; the structure of the system is
instead represented as a graph where nodes are associated

with the cells which are allowed to communicate alongside
the edges of the graph.

2.2 Networks of Evolutionary Processors

The origin of networks of evolutionary processors [10] is a
basic architecture for parallel and distributed symbolic pro-
cessing, related to the Connection Machine [3] as well as the
Logic Flow paradigm [1] which consists of several processors,
each of them being placed in a node of a virtual complete
graph, which are able to handle data associated with the re-
spective node. Each node processor acts on the local data in
accordance with some predefined rules, and then local data
becomes a mobile agent which can navigate in the network
following a given protocol. Only such data can be commu-
nicated which can pass a filtering process. This filtering
process may require to satisfy some conditions imposed by
the sending processor, by the receiving processor or by both
of them. All the nodes send simultaneously their data and
the receiving nodes handle also simultaneously all the arriv-
ing messages, according to some strategies, see, e.g., [11, 12,
2, 3].

2.3 Genetic Algorithms

Genetic Algorithms (GAs) are adaptive heuristic search al-
gorithm premised on the evolutionary ideas of natural se-
lection and genetic. The basic concept of GAs is designed
to simulate processes in natural system necessary for evo-
lution, specifically those that follow the principles first laid
down by Charles Darwin of survival of the fittest. As such
they represent an intelligent exploitation of a random search
within a defined search space to solve a problem.

GAs were introduced as a computational analogy of adap-
tive systems. They are modelled loosely on the principles
of the evolution via natural selection, employing a popula-
tion of individuals that undergo selection in the presence of
variation-inducing operators such as mutation and recom-
bination (crossover). A fitness function is used to evaluate
individuals, and reproductive success varies with fitness.

e Randomly generate an initial population M (0).

e Compute and save the fitness u(m) for each individual
m in the current population M (t).

e Define selection probabilities p(m) for each individual
m in M (t) so that p(m) is proportional to u(m).

e Generate M (¢t + 1) by probabilistically selecting in-
dividuals from M (t) to produce offspring via genetic
operators.

e Repeat step 2 until satisfying solution is obtained.

The paradigm of GAs descibed above is usually the one ap-
plied to solving most of the problems presented to GAs.
Though it might not find the best solution. more often than
not, it would come up with a partially optimal solution.

3. SOCIAL INTELLIGENCE

This section shows some new computational paradigms that
are based on the co-operation of individuals instead on the
competition of individuals (typically modelled by genetic
algorithms). Such social intelligence makes individuals to
evolve towards the best solution using information from other
individuals but none of them disappear. This is a new ap-
proach taken from the biology, in essence, social behaviour

helps individuals to adapt to their environment, as it en-
sures that they obtain access to more information than that
captured by their own senses.

Two popular variants of swarm models exist, those inspired
by studies of social insects such as ant colonies, and those
inspired by studies of the flocking behaviour of birds and
fish.

3.1 Ant Colony Optimization

Ant colony optimization (ACO) is a class of optimization
algorithms modelled on the actions of an ant colony. ACO
methods are useful in problems that need to find paths to
goals. Artificial ’ants’ - simulation agents - locate optimal
solutions by moving through a parameter space represent-
ing all possible solutions. Real ants lay down pheromones
directing each other to resources while exploring their en-
vironment. The simulated ’ants’ similarly record their po-
sitions and the quality of their solutions, so that in later
simulation iterations more ants locate better solutions.[2]
One variation on this approach is the bees algorithm, which
is more analogous to the foraging patterns of the honey bee.

3.2 Particle Swarm Optimization

Particle swarm optimization (PSO) is a global optimization
algorithm for dealing with problems in which a best solution
can be represented as a point or surface in an n-dimensional
space. Hypotheses are plotted in this space and seeded with
an initial velocity, as well as a communication channel be-
tween the particles [17, 18]. Particles then move through
the solution space, and are evaluated according to some fit-
ness criterion after each timestep. Over time, particles are
accelerated towards those particles within their communi-
cation grouping which have better fitness values. The main
advantage of such an approach over other global minimiza-
tion strategies such as simulated annealing is that the large
number of members that make up the particle swarm make
the technique impressively resilient to the problem of local
minima.

3.3 Stochastic Diffusion Search

Stochastic Diffusion Search (SDS) is an agent-based proba-
bilistic global search and optimization technique best suited
to problems where the objective function can be decom-
posed into multiple independent partial-functions. Each
agent maintains a hypothesis which is iteratively tested by
evaluating a randomly selected partial objective function pa-
rameterised by the agent’s current hypothesis. In the stan-
dard version of SDS such partial function evaluations are
binary, resulting in each agent becoming active or inactive.
Information on hypotheses is diffused across the population
via inter-agent communication. Unlike the stigmergic com-
munication used in ACO, in SDS agents communicate hy-
potheses via a one-to-one communication strategy analogous
to the tandem running procedure observed in some species
of ant. A positive feedback mechanism ensures that, over
time, a population of agents stabilise around the global-best
solution. SDS is both an efficient and robust search and
optimization algorithm, which has been extensively mathe-
matically described.

3.4 Grammatical Swarm

Grammatical Swarm (GS) adopts a Particle Swarm learn-
ing algorithm coupled to a Grammatical Evolution (GE)
genotype-phenotype mapping to generate programs in an ar-
bitrary language. Grammatical Evolution (GE) is an evolu-
tionary algorithm that can evolve computer programs in any

language [13, 14], and can be considered a form of grammar-
based genetic programming. Rather than representing the
programs as parse trees, as in GP [15, 16], a linear genome
representation is used. A genotype-phenotype mapping is
employed such that each individuals variable length binary
string, contains in its codons (groups of 8 bits) the infor-
mation to select production rules from a Backus Naur Form
(BNF) grammar. The grammar allows the generation of
programs in an arbitrary language that are guaranteed to
be syntactically correct, and as such it is used as a genera-
tive grammar, as opposed to the classical use of grammars
in compilers to check syntactic correctness of sentences. The
user can tailor the grammar to produce solutions that are
purely syntactically constrained, or they may incorporate
domain knowledge by biasing the grammar to produce very
specific forms of sentences. BNF is a notation that repre-
sents a language in the form of production rules.

Let us suppose the following BNF grammar:

<expr> :: = <expr><op><expr>
| <var>
<op> :: = +
| -
| *
<var> :: = X
Iy

And the following genotype:

(14827254 [5[17]12]

In the example individual (see figure 1), the left-most <expr>
in <expr> <op> <expr> is mapped by reading the next codon
integer value 240 and used in 240%2 = 0 to become another
<expr> <op> <expr>. The developing program now looks
like <expr> <op> <expr> <op> <expr>. Continuing to read
subsequent codons and always mapping the left-most non-
terminal the individual finally generates the expression y *
X - X - X + X%, leaving a number of unused codons at the
end of the individual, which are deemed to be introns and
simply ignored.

This is the classic benchmark problem in which evolution
attempts to find the five input even-parity boolean function
[20]. The grammar adopted here is:

<prog> ::= <expr>
<expr> ::= <expr> <op> <expr>
| (<expr> <op> <expr>)
| <var> | <pre-op> (<var>)
<pre-op> ::= not
<op> ::="|" | & |
<var> ::=d0 | d1 | d2 | d3 | d4

The result is given by the best individual, see transcript
bellow. Figure 2 shows a graphic with the best, average
and variance of the swarm population. This figure has been
obtained using the GEVA simulator [20].

(not (d1) | d2 " d4) &
not (d3) ~ (not (d1) &
(not (d2) &

(not (d2) |

(dl " not (d3) "~ mnot (d1) ~

(not (d1) ~ (d0O | not (d4))))) ~dd)
~not (40)) "~ di

4. CONCLUSIONS

This paper has reviewed some natural computation strate-
gies as a survey concerning optimization strategies. Some
competitive and collaborative models has been exposed in
order to understand the ability to extract some biological
concepts and apply them in computational models as de-
scribed along the paper. Such bio-inspired models have
proof to be a powerful tool in order to solve non common
problems in a collaborative/competitive way.

S. ACKNOWLEDGEMENT

This work has been done by the Natural Computing Group
at the Universidad Politécnica de Madrid.

REFERENCES
[1] L. Errico and C. Jesshope, " Towards a new
architecture for symbolic processing”, Artificial
Intelligence and Information-Control Systems of
Robots. 94, pp. 31-40, 1994.

[2] S. Fahlman, G. Hinton, and T. Seijnowski, ”Massively
parallel architectures for Al: NETL, THISTLE and
Boltzmann machines”, Proc. AAAI National Conf. on
AT pp. 109-113, 1983.

[3] W. Hillis, ”The Connection Machine”, MIT Press,
Cambridge, 1985.

[4] G. Ciobanu, R. Desai, and A. Kumar, ”Membrane
systems and distributed computing”, Pre-Proceedings
of Second Workshop on Membrane Computing, Curtea
de Arges, Romania, August 2002.

[6] G.P&un and G. Rozenberg,” A guide to membrane
computing”, Theoretical Computer Science, 287(1),
pp- 73-100, 2002.

[6] C. Martin-Vide, G. P#un, J. Pazos, and
A. Rodriguez-Patén, ”Tissue P systems”, Theoretical
Computer Science, 296(2), pp. 295-326, 2003.

[7] A. Romero-Jiménez and M. J. Pérez-Jiménez,
”Simulating Turing machines by P systems with
external output”, Fundamenta Informaticae, 49(1-3),
pp. 273-278, 2002.

[8] A. Alhazov, R. Freund, and M. Oswald, ”Cell /symbol
complexity of tissue P systems with symport/antiport
rules”, International Journal of Foundations of
Computer Science, 17(1), pp. 3-25, 2006.

[9] L.Cardelli and G. Paun, ”An universality result for a
(mem)brane calculus based on mate/drip operations”,
International Journal of Foundations of Computer
Science, 17(1), pp. 49-68, 2006.

[10] J. Castellanos, C. Martin-Vide, V. Mitrana, and J.
Sempere, ”Networks of evolutionary processors”, Acta
Informdtica, 39, pp. 517-529, 2003.

[11] C. Martin-Vide, V. Mitrana, M. Perez-Jimenez, and
F. S. Caparrini, ”Hybrid networks of evolutionary
processors”, Lecture Notes in Computer Science, 2723,
pp. 401-412, 2003.

|14 8 27 254 5 17 12

Genotype
<e> = <0> <e> <e>
| <v>
<0> =+
Grammar |-
<> i=X
Iy

Derivation Sequence

<> ——=> <> <C> <>

<O> <€> <€> ——> + <> <e>

(14 mod 2 = 0)

(8 mod 2 = 0)

Parse Tree
(Phenotype) X

AN

IR

Derivation ~<0> <¢> <t>
4 €E> e ==+ <V <> (27 mod 2 = 1) —_— Tree i |
- <> <>
+ <V> <E> —=> 4 X <€> (254 mod 2 = 0)]
+ X <e> ——> + X <V> (5 mod 2 = 1) X y
+X SV ==+ XY (17 mod 2 = 1)
Figure 1. Grammatical Swarm concepts.
GEVA has finished running
(_Close) |l saveimage (Reset Graph)
Console Graph
16,04
14,0
12,0
10,0
8,04
4 - ’A\\‘ A AN ™ A
* \\,"" o/~ \\// N/ \" N SAVAYN
4.0 12.0 200 28.0 36.0 44.0 52.0 60.0 68.0 76.0 84.0 92.0 100.0
! Fitness Codon Invalids Other
Visible Highlight Name Value Minimum Maximum Mean Median StdDev Scale Offset Colour
v o ® Best 16,000 4,000 16,000 7,079 6,000 3,754 11 vl 0: M
g O Average 16,011 4,600 16,011 8575 7,190 3,586 11 - 0/ (Mroyal-blue 3)
v Variance 0,011 0,010 20,080 7141 6,830 5,123 11) silver 5]

Figure 2. Results of even-5-parity problem simulated with GEVA.

[12] E. C. Varju and V. Mitrana, ”Evolutionary systems, a
language generating device inpired by evolving
communities of cells”, Acta Informatica, 36, pp.
913-926, 2000.

M. ONeill and C. Ryan, ” Grammatical Evolution”,
IEEE Trans. Evolutionary Computation, Vol. 5, No.4,
2001.

M. ONeill, C. Ryan, M. Keijzer and M. Cattolico,
?Crossover in Grammatical Evolution”, Genetic
Programming and Evolvable Machines, Vol. 4 No. 1.
Kluwer Academic Publishers, 2003.

J.R. Koza, D. Andre, F.H. Bennett IIT and M. Keane
” Genetic Programming 3: Darwinian Invention and
Problem Solving”, Morgan Kaufmann, 1999.

[17] J. Kennedy, R. Eberhart and Y. Shi, ” Swarm
Intelligence”, Morgan Kauff-man, San Mateo,
California, 2001.

[18] E. Bonabeau, M. Dorigo and G. Theraulaz, ” Swarm
Intelligence: From Natural to Artificial Systems”,
Oxford University Press, Oxford, 1999.

(13]

114] [19] http://en.wikipedia.org

[20] http://www.grammatical-evolution.org/

(15]

[16] J.R. Koza, M. Keane, M.J. Streeter, W. Mydlowec, J.
Yu, and G. Lanza, ” Genetic Programming IV: Routine
Human-Competitive Machine Intelligence”. Kluwer

Academic Publishers, 2003.

