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ABSTRACT 
Long-term load forecasting demand is necessary for the 

correct operation of electric utilities.  There is an on-going 

attention toward putting new approaches to the task. Recently, 

Neuro-fuzzy modeling has played a successful role in various 

applications over nonlinear time series prediction. In 

modeling, irrelevant inputs cause the deterioration of 

performance. Therefore, to have an accurate model, some 

strategies are needed to choose a set of most relevant inputs. 

Mutual Information (MI) is very effective in evaluating the 

relevance of each input from the aspect of information theory. 

This paper presents a neuro-fuzzy model with locally linear 

model tree (LoLiMoT) learning algorithm for the long term 

load forecasting of North-American electric utility. Proper 

inputs which consider historical data are selected by MI.  
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1. INTRODUCTION 
Long term load forecasting demand is necessary for the 

correct operation of electric utilities. Long-term forecasting is 

usually used for planning, such as determining the future sites 

of generators; accurate forecasting of electricity prices would 

enable power marketers and companies to make sound 

business decisions in a volatile environment [1]. Long-term 

load forecasting plays an important role in power systems for 

system planning, construction scheduling of new generating 

capacity and electricity purchasing of generating units [2]. 

Many techniques exist for the approximation of the 

underlying process of a time series: linear methods such as 

ARX, ARMA, etc. [12,13], and nonlinear ones such as 

artificial neural networks [7,12]. The common difficulty to all 

the methods is the determination of sufficient and necessary 

information for an accurate prediction. There is a great 

attention to new approaches for the enhancement of 

forecasting accuracy because of economical and industrial 

aspects. Various modeling approaches are proposed in the 

literature. ARIMA models [17,18] are one of the traditional 

approaches for forecasting issues. ARIMA models and the 

other classic approaches such as Kalman Filters suffer from 

nonlinear behavior of dynamical systems [15]. Nonlinear 

parametric models have attracted a great attention to load 

forecasting [15]. Artificial Neural networks (NNs) [3-7] have 

succeeded in several power system problems, such as 

planning, control, analysis, protection, design, load 

forecasting, security analysis, and fault diagnosis[22]. 

Artificial neural networks are being applied to forecasting 

problems since their distributed structure of weights and 

neurons permits to approach complex relationships between 

variables without specifying them explicitly in advance. 

Multiple neural approaches are found in the literature such as, 

et. al. Artificial neural networks and neuro-fuzzy models 

utilize a learning mechanism. 

In learning process, generalization performance on a finite 

sized training set is closely related to the number of free 

parameters in the network. The performance of the learning is 

greatly affected by the selection of model inputs. Input 

variables that provide little information about the network 

output generate unneeded weights [8]. The objective of Input 

selection is to identify a subset of original variables from a 

given input data set while removing irrelevant and/or 

redundant variables. 

In this paper, locally linear neuro-fuzzy modeling with input 

selection methodology based on MI is used for long term 

prediction. This method gives more reasonable inputs and 

improves generalization performance. 

The rest of the paper is outlined as follows. Section 2 

describes MI and its estimation. In section 3, an algorithm for 

input selection using MI is discussed. Neuro-fuzzy modeling 

with LoLiMoT learning algorithm is considered in section 4. 

Finally, section 5, presents the simulation results followed by 

section 6 that concludes the paper. 

 

 

2. MUTUAL INFORMATION AND ITS 

ESTIMATION 

2.1 Definition of Mutual Information 
In probability theory, especially in the information theory the 

MI can be used for evaluating the dependencies between 

random variables. In fact, the MI between two random 

variables, such as X and Y, can be considered as a measure of 

the amount of knowledge on Y provided by X (or conversely 

on the amount of knowledge on X provided by Y). If X and 

Yare to be independent, therefore X contains no information 

about Y and vice versa; thus the MI between them is zero. 

The definition of MI begins from the Shannon Entropy [9] 

in the information theory [23]. The MI of two random 

variables X and Y is defined as: 

 

   I(X; Y) = H(X) - H(X|Y) = H(Y) - H(Y|X)  

= H(X)+ H(Y) - H(X; Y)                 (1) 

 



Where H(X) and H(Y) are the entropies of X and Y, and 

H(X|Y), H(Y|X) are the conditional entropies, and H(X;Y) is 

the joint entropy of X and Y that is defined by: 

 

H(X) = -∫ PX (x) log PX (x) dx                 (2) 

 

H(Y) = -∫ PY (y) log PY (y) dy                 (3) 

 

H(X; Y)= -∫∫PX,Y (x,y) log PX,Y (x,y) dx dy                (4) 

 

Where PX,Y (x, y) and PX (x) and pY(y) are the joint 

probability density function and marginal density functions of 

X and Y, respectively. The marginal density functions are 

given by: 

PX(x) = -∫ PX,Y (x,y) dy                  (5) 

 

PY(y) = -∫ PX,Y (x,y) dx                  (6) 

 

MI is the Kullback-Leibler distance between the joint 

Distribution PX,Y(x, y) and the product distribution pX (x).pY 

(y). By substituting equations (2) to (4) into (1), the MI 

equation will be: 

 

I(X; Y) =∫∫PX,Y (x,y)log , ( , )

( ) ( )

X Y

X Y

p x y

p x p y
dx dy             (7) 

In discrete forms the integrations are replaced by summation 

over all possible values that appear in data. Therefore, it is 

only required to estimate  PX,Y (x,y) in order to estimate the 

MI between X and Y, by (5) to (7). Histogram- and kernel-

based methods are widespread to estimate probability density 

functions [19]. However, their use is usually restricted to one 

or two-dimensional probability density functions. 

 

2.2. Estimating MI 
A recent estimator based on entropy is used, that is estimated 

from k-nearest neighbors' statistics [16]. It estimates the MI 

between two random variables of any dimensional space. The 

basic idea is to estimate entropy from the average distance to 

the k-nearest neighbors (over all of data). 

In practice, one has a set of N input-output pairs, zi=(xi,yi), 

i=1,...,N, which are assumed to be realizations of a random 

variable Z=(X, Y) with density Px y (x, y) Either X and Y 

have values in R or in RP, and the algorithm will use the 

natural norm (Euclidean norm) in those spaces. Input-output 

pairs are compared through the maximum norm: 

 

   ||z-z´ ||∞ = max {||x-x´ || , ||y-y´ ||}                 (8) 

 

It can be considered that k is a fixed positive integer, then 

zk(i)=(xk(i),yk(i)) is the k-th nearest neighbor of zi (with 

maximum norm). It can be denoted that: 

 

ε i /2 = ||z-zk(i) ||∞                            (9) 

 
x

iε  /2 = ||xi - xk(i) || ,  
y

iε  /2= ||yi- yk(i) ||              (10) 

 
ε i /2 is the distance from zi to its k-th neighbor and x

i
ε  /2 

and y

iε  /2 are the distances between the same points 

projected into X and Y subspaces. Obviously, ε i 

=max{
x

iε ,
y

iε }. x

in , y

in are the numbers of sample points 

with ||xi-xj || ≤
x

i
ε  /2 and ||yi- yj|| ≤

y

iε  /2. The estimation for 

MI is then: 
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Where Ψ is the digamma function: 
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Where: 
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∞
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With a small value for k, this estimator has a large variance 

and a small bias, whereas a large value of k leads to a small 

variance and a large bias [10]. In this paper, k= 6 is used. 

 

 

3. INPUT VARIABLES SELECTION                                 

ALGORITHM 
This section is devoted to describe the input variables 

selection algorithm. This algorithm has been used beforehand 

for feature selection in classification and pattern recognition 

problems [11], [20], and [21] which is proposed by Battiti in 

1994. The objective of this algorithm is to maximize 

relevance between inputs and output and minimizes the 

redundancy of selected inputs. This algorithm computes I(T;l) 

and I(l;l′), where l and l′ are individual inputs and T is output. 

The goal of these two terms is to select relevant input with the 

output which has least dependency with other selected inputs 

[21]. The algorithm is as follows: 

 

1) Initialization: Set L to ‘initial set of n inputs’; S to ‘empty 

set’; and T to ‘output’. 

2) Computation of the mutual information with the output:For 

each input l∈L compute I(T;l). 

3) Choice of the first input: Find the input l that maximizes 

I(T;l); Set L ←L−{l} , S← {l} . 

4) Greedy selection: Repeat until desired number of input 

variables is selected: 

     a) Computation of the mutual information between 

variables: For all couples of variables (l, S) with l∈L, s 

∈S ; compute I(l;s), if it is not already available. 

     b) Selection of the next input: Chose the input l∈L as the 

one that maximizes ;

| |

( ; ) ( , )
β

S

I T l I l s

s S
−

∈
∑  set 

L←L−{l},  S←S∪ {l}. 

5) Output the set S containing the selected inputs. 

 
To consider redundancy between input variables, Battiti 

imports β as a parameter to adjust the relative importance of 

mutual information between the candidate input and the 

already selected inputs with respect to the mutual information 

with the output. If β = 0 the algorithm only attempts to 

maximize mutual information with output, so the redundancy 

between input variables is never considered. If β increases, the 

total mutual information between already selected inputs 

influences the selection procedure much and the redundancy 

is then reduced [11], [21]. 

 

4. LOCALLY LINEAR NEURO-FUZZY 

WITH MODEL TREE LEARNING 

4.1. Neuro-fuzzy modeling 
The main idea for utilizing the locally linear 

neurofuzzy(LLNF) model for function approximation is 

dividing the input space into small linear subspaces with 

fuzzy validity functions φi(u). These functions describe the 

validity of each linear model in its region. The validity 



function applied here is the normalized Gaussian function, 

which is defined as 
2

2

( )
( ) exp( )

2

x c
xµ

σ

−
= −                 (14) 

 where c is the center and s is the standard deviation of the 

Gaussian. The Gaussian function is the membership function 

(degree of membership of a specific object to the fuzzy sets) 

used in this study. Each local linear subspace with its validity 

function is called a fuzzy neuron. Thus the total model is a 

neurofuzzy network with one hidden layer and a linear neuron 

in the output layer which simply calculates the weighted sum 

of the outputs of locally linear models (LLMs) as: 

0 1 21 2
ˆ

pi i i i i py u u uω ω ω ω= + + + +…              (15) 
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1
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M
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i

y y uφ
=

=∑                 (16) 

 

where u = [u1  u2 . . .  up]
T   is the model input, M is the 

number of LLM neurons, and wij denotes the LLM 

parameters of the ith neuron. The validity functions are 

chosen as normalized Gaussians; normalization is necessary 

for a proper interpretation of validity functions: 
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          (18) 

Each Gaussian validity function has two sets of parameters, 

centers (cij) and standard deviations (σij) which are the 2M.p 

parameters of the nonlinear hidden layer. Optimization or 

learning methods are used to adjust the two sets of 

parameters, the rule-consequent parameters of the locally 

linear models (wij) and the rule premise parameters of validity 

functions (cij and σij). A least squares optimization method is 

used to adjust the parameters of local linear models (wij), and 

a learning algorithm (described below) is used to adjust the 

parameters of validity functions (cij and σij)[14]. Global 

optimization of linear parameters is simply obtained by the 

least squares technique. The complete parameter vector 

contains M(p + 1) elements: 

10 11 1 20 21

0

T

p

M M p

ω ω ω ω ω
ω

ω ω

 
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 

�

� �
   (19) 

and the associated regression matrix X for N measured 

data samples is 

 

[ ]1 2 ... MX X X X=                 (20) 
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              (21) 

Thus 

ˆˆ .y X ω=    ;   
1ˆˆ ( . )

T
X X I X yω α

−
= +  ; 1α <<        (22) 

 

where α is the regularization parameter for avoiding any near 

singularity of matrix XTX and in this study is empirically set 

to 0.002. The structure of LLNF is shown in Fig. 1. The 

remarkable properties of locally linear neuro fuzzy model, its 

transparency and intuitive construction, lead to the use of least 

squares technique for rule antecedent parameters and 

incremental learning procedures for rule consequent 

parameters. In this paper, Locally Linear Model Tree 

(LoLiMoT) algorithm as an incremental tree-based algorithm 

is used to tune the rule premise parameters, i.e. determining 

the validation hypercube for each locally linear model [14], 

[15]. In each iteration, the worst performing locally linear 

neuron is determined to be divided. All the possible divisions 

in the p dimensional input space are checked and the best is 

performed. The fuzzy validity functions for the new structure 

are updated; their centers are the centers of the new hyper 

cubes, and the standard deviations are usually set as 0.7. 

For more detail refer to [15]. 

 
 

Fig. 1. Structure of locally linear neuro-fuzzy model 

 

4.2. Learning Algorithm 

Locally Linear Model Tree (LOLIMOT) is a progressive tree 

construction algorithm that partitions the input space by axis 

bisection in all directions of input space. It implements a 

heuristic search for the rule premise parameters and avoids a 

time-consuming nonlinear optimization. The LOLIMOT 

algorithm is described in five steps according to [14]: 

1. Start with an initial model: Start with a single LLM, which 

is a global linear model over the whole input space with 

φ1(u) = 1, and set M = 1. If there is a priori input space 

partitioning, it can be used as the initial structure. 

2. Find the worst LLM: Calculate a local loss function, for 

example, mean square error (MSE), for each of the i = 1, .. 

., M  LLMs and find the worst performing LLM. 

3. Check all divisions: The worst LLM is considered for 

further refinement. The hyper rectangle (more than a 

three-dimensional rectangle or cube) of this LLM is split 

into two halves with an axis orthogonal split. Divisions in 

all dimensions are tried, and for each of the p divisions, 

the following steps are carried out. First, construct the 

multidimensional membership functions for both 

generated hyper rectangles and construct all validity 

functions: In part a, only the membership function of LLM 

that is split would change and the membership function of 

other neurons do not change, but all of the validity 

functions change that must be updated for all LLMs by 

equation (17). Second, estimate the rule-consequent 

parameters for newly generated LLMs and third, calculate 

the loss function for the current overall model. 

4. Find the best division: The best of the p alternatives 

checked in step 3 is selected, and the related validity 

functions and LLMs are constructed. The number of LLM 

neurons is incremented M = M + 1. 

 5. Test the termination condition: If the termination condition 



      is met, then stop; otherwise, go to step 2. The termination 

condition is reaching to a predefined error between output  

     (y) and LLNF output with M neuron (
^

y ), that is, when 

the condition|| y  -
^

y  || << ε is satisfied. In practice we 

used a predefined number of neurons to LOLIMOT, 

plotted the error as a function of this number, and kept 

increasing the number of neurons until satisfactory 

performance was obtained. A suitable number of LLMs 

would be fit to training data on the basis of a validation 

set. The best number of LLMs is that in which the root 

mean square error (RMSE) for the validation set starts to 

increase. Details can be found in work by Nelles[14].  
In each iteration, the worst performing locally linear 

neuron is determined to be divided. All the possible 

divisions in the p-dimensional input space are checked, 
and the best is selected. The splitting ratio can be simply set to 

0.5, which means that the locally linear neuron is divided into 

two halves. The fuzzy validity functions for the new 

construction are updated; their centers are the centers of the 

new hyper cubes (more than a three-dimensional cube), and 

the standard deviations are usually set to 0.7 times the width 

of the hypercube in that dimension. 

Fig. 2 illustrates the operation of the LOLIMOT algorithm in 

the first four iterations for a two-dimensional input space. In 

iteration 1, a global linear model is fit to data. Then for 

refinement, input space is split into halves, and a local linear 

model is fit in each hyper rectangle. In iteration 2, first, the 

best possible splitting method is selected (e.g., in Fig.2 , 

iteration 2 splitting along the u2 axis is assumed to be better), 

then in the selected model, the worst LLM should be used for 

further refinement (shaded rectangle or 2-1, for instance), and 

the algorithm continues with a default number of LLMs. 

 

 
Fig. 2. Operation of the LOLIMOT algorithm in the first five 

iterations for a two dimensional input space. 

 

 

 

 

 

 

5. RESULTS 

5.1. Data set  
In order to compare the proposed method with the one in [22], 

the same data set is used, i.e.  North-American electric utility 

load data.  

The electric peak-load values range in the intervals 

[1528,4635] MW. The load data is preprocessed using 

ordinary normalization (minimum and maximum values in the 

[−0.5,0.5] range). There is no particular treatment for 

holidays. 

The dataset is shown in Fig. 3. 

 

Fig.3. Dataset of The North-American electric 

 

 

5.2. Experiments 
The proposed methods are applied to the above data. The aim 

of the input selection in the case long term load forecasting is 

to find which lagged values of load time series are suitable. 

By applying the mutual information technique, 3 of the inputs 

that have the most significant impact on the output are 

identified and used. The results show a notable improvement 

over those attained without the input selection stage. Fig. 4 to 

Fig. 7 shows the predictive power of the LoLiMoT algorithm, 

and the effect of input selection via the mutual information 

technique. 

Four experiments reported in [22] are carried out by the 

proposed method in this paper. In the first experiment, the 

training set contains 104 weekly peak-loads from 1985 to  

1986. The testing set contains 52 weekly peak-loads from 

1987. The objective to foresee the 104 weekly peak-loads 

from 1988 to 1989. The second experiment is quite similar to 

the first. In it, the training set includes 208 weekly peak-loads 

from 1985 to 1986, and from 1988 to 1989. The testing set 

remains the same, and forecasting spans the time horizon 

from 1990 to 1991. The first and second experiments are done 

based on 52 step ahead forecast. 

In the third experiment, the training set contains 24 monthly 

peak-loads from 1985 to 1986. The testing set contains 12 

monthly peak-loads from 1987. Objective to foresee the 24 

monthly peak-loads from 1988 to 1989. The fourth 

experiment is quite similar to the third as well. The training 

set includes 48 monthly peak-loads from 1985 to 1986, and 

from 1988 to 1989. The testing set remains the same, and 

forecasting spans the time horizon from 1990 to 1991. These 

two experiments are carried out based on 12 step ahead 

forecast. 

Table 1 shows forecasting errors, above experiments in 

weekly and monthly peak load forecasting. 



 
Fig. 4. First experiment. 

 
Fig. 5. Second experiment. 

 
Fig. 6. Third experiment. 

Fig. 7. Fourth experiment.

  



Table 1 

Forecasting errors – mean, maximum, and minimum absolute error, 

mean square error (MSE) – in the four experiments. 

Model                        Errors        Experiments   

  1  2  3  4  

LoLiMoT with    

        MI  

Mean  0.063  0.056  0.070  0.084  

 Max  0.462  0.352  0.221  0.452  

 Min  0.000  0.000  0.000  0.000  

 MSE  0.010  0.007  0.009  0.016  

      

LoLiMoT without  

            MI  

Mean  0.071  0.059  0.12  0.102  

 Max  0.343  0.383  0.320  0.382  

 Min  0.000  0.000  0.000  0.000  

 MSE  0.012  0.008  0.023  0.017  

 

 

6.  CONCLUSION 
One of the most successful applications of the neuro-fuzzy 

model to real-world problems is in the area of electric load 

forecasting. In this paper, a neuro-fuzzy model with locally 

linear model tree (LoLiMoT) learning algorithm was 

implemented for long term load forecasting. Inputs were 

selected using MI for the model considering historical data of 

the North-American electric utility. In this approach 3 of the 

more relevant inputs were kept in order to increase the speed 

and computational power of the LoLiMoT algorithm. 

Experimental results show that this method has satisfactory 

results.The experiments also show that the performance of the 

LoLiMoT with MI based input selection on long term load 

forecasts is better than that of the LoLiMoT without MI input 

selection. 
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