
SOME APPROACHES TO THE GENERATION OF
SENTENCES IN NATURAL LANGUAGE FROM UNL

Aram Avetisyan
Institute of Informatics and Automation Problems of

National Academy of Sciences of the Republic of Armenia
Yerevan, Armenia

AramAvetisyan@gmail.com
ABSTRACT

The purpose of this paper is to present some solutions
used in the new UNL to Natural Language (NL) generation
software, the results achieved in its development, and the
basic advantages of the new Algorithmic system over the old
one, giving the outline of the specificity of some key
algorithmic solutions.

Keywords
Computer science, informatics, information, semantic,
language, translation.

1. INTRODUCTION
1.1 UNL (Universal Networking Language) is a meta
language for representation of semantic information. Its main
purpose is to store “the meaning” of natural language texts in
a language independent format. UNL data can be used for
various types of processing such as, translation (NL1 to UNL
to NL2) semantic search (language independent), data
aggregation and navigation etc.
The UNL expresses information in form of semantic networks
with hyper-nodes. In other words each sentence in UNL is a
directed linked graph. Different from natural languages, UNL
expressions are unambiguous. In the UNL semantic networks,
nodes represent concepts, and arcs represent relations between
concepts. Concepts can be annotated. These concepts are
called “Universal words” (also referred to as UWs). The arcs
connection UWs are called “relations”. They specify role of
each word in a sentence. The subjective meaning intended by
the speaker can be expressed through “attributes”. In addition,
the “Knowledge Base (UNLKB)” is provided to define
semantics of UWs. The UNLKB defines every possible
relations between concepts including hierarchical relations
and inference mechanism based on inclusion relations
between concepts. Thus, the UNLKB provides semantic
background of the UNL to make sure the meaning of the UNL
expressions is unambiguous.
1.2 UNL to NL Generation - One of the key tools needed
for the functioning of a UNL based system is a UNL to NL
generation software. So far only one such tool was available.
The tool is called UNL DeConverter, it was provided by UNL
Center in Tokyo. Developed in the beginning of the UNL
project in end 90s it was meant mainly for testing and
development of linguistic resources. These resources are
natural language word dictionary, natural language grammar
generation rules and Co-occurrence Dictionary. Although the
tool is very helpful for testing and development it wasn’t
meant for large scale application implying multithreading,
high speed, and large documents to process. Also the
technology used for its development has created several
difficulties for the improvement.
1.3 UNL Dictionary stores word entries of the natural
language with corresponding Universal Words which are
language independent concepts and grammatical attributes of
the entry in terms of the target natural language grammar.
Dictionaries are being stored in text documents which are then

being compiled into a native code using a special tool. These
native code files are being fed to other UNL processing
Software, such as DeConverter.
1.4 Generation Rules - Deconversion (or “generation” in
general) rules describe the conditions for rule application: the
way of rewriting the attributes of nodes that satisfy those
conditions, as well as the way of composing a natural
language sentence.
1.5 The algorithm of NL Generation - When
DeConverter process starts, a sentence represented by a UNL
expression (that is, a set of binary relations) is processes as a
linked directed graph structure called Node-net. The root node
(a starting point for algorithm) of a Node-net is called Entry
Node and represents the main predicate of the sentence
(Figure 1). This node is represented in the UNL expression
with “@entry” attribute (Example 1). In the output
DeConverter returns a word list with morphology containing
NL words matched for the concepts from the UNL-NL
Dictionary. The order of the words is being produced
according to the generation rules. The algorithm basics are the
following. On first step the entry node is being placed in to
the output list, then on each next step the DeConverter
searches for a pair of related nodes, such, that one of the
nodes is already in the output list and the other is still in the
graph. By finding one it looks up for rules to be matching
attributes of both nodes respectively. By finding matching
rule it is being applied adding the linked node to the output
list in a position described by the rule.
Thus, the generation of the word (node) list in the target
language basically depends on the generation rules and
dictionary provided for that language. The main workflow of
DeConverter is also described by the rules. They specify the
direction the algorithm goes and the actions it makes. Thus
the development of generation rules and dictionary is an
essential part in generation process.

Node-net

ni ni-1 ni-2 ni+1 ni+2 ni+3 ni+4

. . .

nj

nj+1 nj+2

nj+3 nj+4

nk

nk+1

nk+2

G G C C C C

DeConversion
Rules

Word
Dictionary

Co-occurrence
Dictionary

. . .

Node-list

DeConverter

Figure 1

English: The boy reads.
UNL: agt(read(icl>do).@enrty.@present,boy(icl>person))

Example 1

2. Disadvantages of DeConverter
Below we are bringing some of the main disadvantages of the
existing NL generation tool (DeConverter) that we have tried
to improve in the new software:

1. The DeConverter is a single threaded application. It
can run only one instance at a time when called from a same
process. This brings up an obstacle for building web
applications based on it.

2. The DeConverter is a win32 application which can be
ran only on Windows platform, while most of the professional
internet servers are running Linux/Unix OS. So, This is an
essential point, because the UNL is an open project and it
isn’t supposed to be built only for a commercial OS.

3. At the time when the DeConverter was developed, the
machine resources where strictly limited and the resource
economy was of one of the highest priorities in software
development, that is the reason why the DeConverter has
limitations on the number of used attributes, and why it gets
too slow when the processing large data.

4. Another problem that UNL developers meet during
their work, is the limitation of the rule syntax. This limitations
in many cases prevent the users to generalize some rules to
cover more case, which brings to a bigger number of rules and
slows down the performance.

5. The tools has some essential bugs and lacks the proper
interface for tracing/debugging the resources developed.

6. The sources of the tool are not available for
improvement.

3. The 2nd Generation
At the end of 2008 the development of 2nd generation of

NL Generator has started. The new NL Generator has the
code name “jDeCo”. It is being developed in Java, which
guarantees its platform-independence, both as web and
standalone applications. The engine of the jDeCo is being
developed separately from its interface, so the application can
be available as a Java library and be implemented into any
type of application, like web service, web application,
standalone or even mobile application. This fact significantly
expands the range of jDeCo’s possible applications. Due to its
new algorithmic solutions, there are no restrictions on the
number of rules, dictionary entries, attributes or the UNL
document, the only limit is the limit of the machine memory.
Below we will illustrate some examples of a UNL Sentence,
and some algorithmic solutions used in JDeCo.

The example 2 illustrates a UNL sentence node ([S:1]…
[/S]) that includes the {unl}…{/unl} segment containing the
UNL sentence relations between concept nodes called
“Universal Words”. So the UNL sentence is a number of
Universal Words related to each other.
[S:1]
{unl}
aoj(outcome(icl>result):0W.@past.@def.@entry,

description(icl>action):00.@topic)
mod(outcome(icl>result):0W.@past.@def.@entry,

collaboration(icl>action):1B.@def)
obj(description(icl>action):00.@topic, Egypt:0H)
agt(collaboration(icl>action):1B.@def, :01)
agt(accompany(agt>thing,obj>thing):3F.@past, :01)
aoj(more(aoj>thing):1S, :01)
aoj(prominent(aoj>thing):26, :01)
and:01(scientist(icl>scholar):2W.@entry.@pl,

scholar(icl>person):2J.@pl)
bas(more(aoj>thing):1S, 150:22)

obj(accompany(agt>thing,obj>thing):3F.@past,
Bonaparte(iof>person):3R)

gol(accompany(agt>thing,obj>thing):3F.@past, Egypt:44)
tim(accompany(agt>thing,obj>thing):3F.@past, 1798:4D)
{/unl}
[/S]

Example 2
The first relation describes aoj type of relation between

concepts “outcome(icl>result)” with id “0W” attributes
“.@past, .@def, .@entry” and “description(icl>action)” with
id “00” and attribute “.@topic”.

NL Generator transforms the sentence represented by an
UNL expression - that is, a set of binary relations - into the
directed hyper graph structure, called Node-net. The root node
of a Node-net is the Entry Node. It then applies generation
rules to every node in the Node-net respectively, and
generates the word list in the target language. In this process,
the syntactic structure is determined by applying Syntactic
Rules, while morphemes are generated by applying
Morphological Rules.

3.1 Rule Applying
One of the key differences of jDeCo from its predecessor

DeCo is the rule applying order. In DeCo the only ordering
criteria is the priority of the Rule, while in jDeCo the type of
the Rule also takes part in ordering. In jDeCo the
Morphological Rules can be applied only after the Syntactic
Rule applying process has been finished, making sure that all
nodes from Node-net were found in dictionary and correctly
inserted into the Node-list. The fact that in jDeCo all
dictionary entries have nominative case (not like DeCo),
significantly accelerates dictionary developing process. After
the Syntactic Rule applying process is finished, the Node-list
will consist of ordered UWs in nominative case, and the
Morphological process may start. During that process,
Morphological Rules are being applied to the nodes in Node-
list changing their form, case, etc... Only after that, the
generation process is finished.

3.2 Matching Process
Another new algorithmic solution is the method of

attribute search, used for matching the appropriate rule and
dictionary entry. In DeCo, after parsing all the input data,
matrixes "attribute-rule" and "attribute-dictionary entry" are
being created, for entry and rule matching, thus the quantity
of elements are limited by the dimensions of matrixes. This
problem was solved in jDeCo by using binary operations for
the most of matching tasks.

After parsing the input, each attribute gets a numerical
ID (21, 22, 23, 24…) presented binary (0001, 0010, 0100,
1000...). Thus, because all dictionary entries and rules may
have several attributes with their binary IDs, they also will
have a new element, which is the summary of their attributes’
binary IDs. For example if a rule has attributes with binary
IDs 0010, 0001 and 1000, their summary will be 1011. This
allows us to know exactly what attributes the rule has, by
having the attributes’ summary only.

Suppose that a Rule has attributes summary value
101101, which means that it demands the Dictionary Entry to
have attributes A, C, D and F respectively. If the Entry,
currently being checked, has attributes summary
011111(ABCDE), to check if the Entry matches the Rule, the
program will make a simple binary “AND” (1 AND 1 = 1, 1
AND 0 = 0, 0 AND 0 = 0) operation with the attributes’
summary values:

101101 = F DC A AND
01 11 1 1 = EDCBA
001101 = DC A

The result doesn’t equal to the Rule attributes summary
(101101 ≠ 001101), so the entry is not valid for the rule. Now
let’s suppose that another Entry has attributes summary
111101.

101101 = F DC A AND
1 1 1101 = FEDC A
101101 = F DC A

In this case the binary AND returns a result of 101101
which equals to the Rule’s attributes summary, this means
that it contains the attributes demanded by the rule. The same
algorithm is used for matching the appropriate Rules for the
Node in Condition Window.
Now let’s see an example from jDeCo NL generation process

Description de l'Egypte was the outcome of the collaboration
of more than 150 prominent scholars and scientists who
accompanied Bonaparte to Egypt in 1798.
{unl}
aoj(outcome(icl>result):0W.@past.@def.@entry,

description(icl>action):00.@topic)
mod(outcome(icl>result):0W.@past.@def.@entry,

collaboration(icl>action):1B.@def)
…
…
…

{/unl}

The Node “outcome(icl>result)” is the Entry Node of the
sentence, so this Node is inserted into Node-List on the first
step of generation. In UNL sentence it has attributes “past”
and “definite”. In dictionary this Entry is “[outcome]
{}"outcome(icl>result)"(N)<A,0,0>;”, where it has attribute
“N(Noun)”. So generally the word “outcome” has attributes
summary of “past”, “definite” and “noun” 2203404206082 (in
decimal numeration), and while process of matching a rule for
this node, the rule must have no other attribute, but these
ones. Suppose that in this case the rule that fits this Node is
“I"::aoj"(::)P1;”, it has no attributes, but as there were no
other rules for “aoj” with the mentioned attributes, this Rule is
being applied. Now let’s see another case where the
generation matches a Rule having the needed attributes for the
Node.

Let’s assume that the generation is on the stage of
morphological analysis, where the output result is “<<<
Egypt description was the outcome collaboration of more 150
prominent << scientists and scholars >> accompany
Bonaparte Egypt 1798 >>>”, and the Condition Window is on
the Node “collaboration of ” with attributes “N”, “def”, “gen”
and attributes summary 1099797102594. Here the generation,
using the binary AND operation, matches this Node with
morphological rule “m(N,@def: -@def , the &)P210” (if the
Node is a noun and is definite, remove the attribute @def, and
add a string “the ” to the beginning of the Node) with
attributes “N” and “def”, and att. summary 1099796840450

10000000000010001000001000000000000000010 (1099797102594)
 AND
10000000000010001000000000000000000000010 (1099796840450)

10000000000010001000000000000000000000010 (1099796840450)

1099796840450 = attributes “N” and “def”

If there is no other matching rule with higher priority (>210)
this rule will be applied to the Node, after that action the Node
will be “the collaboration of ”.

4. CONCLUSION
jDeCo has completely solved the mentioned

disadvantages of DeConverter.
 jDeco is platform-independent, supports multiple

threads, so it can run several instances at the same time.
jDeCo is limitied only by the machine resources, so large data
processing now will be much faster. Fewer limitations on the
rule syntax, the rules now are more flexible, allowing the
users to generalize them to cover more cases. This helps to
develop more hierarchal and structured rules with minimized
quantity and better performance.

Currently the jDeCo engine is in a beta version as a web
application and standalone. Along with the 1st generation
DeConverter it will be available in UNL Platform, a web
framework that is being developed by the UNDL Foundation.
The jDeCo is still in development process.

5. REFERENCES
[1] “The Universal Networking Language (UNL)
Specifications”, v.3 edition 2, UNDL Foundation, 2003

[2] Vahan Avetisyan, Robert Urutyan, Liana Hovsepyan,
Susanna Tioyan, “Development of deconversion rules fro
genegation of Armenian sentences from UNL”, Institute for
Informatics and Automation Problems of National Academy
of Sciences of the Republic of Armenia 2005-8

[3] Uchida H., Zhu M., “The Universal Networking Language
(UNL) specifications” version 7, UNDL Foundation, June
2005.

