
Laplacian Based LF Quality Map for Phase Reconstruction

Yuri, Barseghyan
Yerevan State University

Yerevan, Armenia

e-mail: yuri.barseghyan@gmail.com

Hakob, Sarukhanyan
National Armenian Academy of Sciences, Institute for

Informatics and Automation Problems
Yerevan, Armenia

e-mail: hakop@ipia.sci.am

ABSTRACT
In this paper a novel method of quality map construction
based on Laplacian filtering (LF) of the given wrapped phase
data is presented. Experimental results show that the pro-
posed quality map can have higher reliability than conven-
tional quality maps when unwrapping noisy, low-modulation,
and/or discontinuous phase maps.
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1. INTRODUCTION
Phase unwrapping is one of the most important process-
ing steps in many advanced imaging applications such as
magnetic resonance imaging (MRI) [1, 2], satellite radar in-
terferometry (SAR) [3, 4, 5], and optical interferometry [6],
where the required data is encoded in the form of a phase
distribution. The (absolute) phase extracted from the ac-
tual signal is wrapped into the interval (−π, π] and called
principal or wrapped phase. The relationship between the
wrapped phase ψ and the absolute (unwrapped) phase φ is
stated as

ψ = φ + 2πk, ψ ∈ (−π, π]. (1)

In the applications mentioned above the wrapped phase is
useless until 2π phase discontinuities are removed. This is
realized by phase unwrapping algorithms. Simply stated,
the phase unwrapping problem is to obtain an estimate for
the absolute phase from the given wrapped phase values.

Many various approaches to 2-D phase unwrapping have
been proposed over the past several decades, but only a
limited number are currently in common use. The meth-
ods developed for phase unwrapping problem can be roughly
separated in two large families: Path-following (local) meth-
ods and Minimum-norm (global) methods. The first family
of algorithms relies on performing an integration of discrete
gradients of wrapped phase along a selected path. The algo-
rithms of the second family rely on a global approximation
of the absolute phase. A comprehensive review of this two
families of algorithms is given in [7].

Many path-following algorithms rely completely on qual-
ity maps. Comparison of quality maps with the phase and
residue (phase inconsistency) data shows that the corrupted
phase (and residue) tends to have low-quality values. This
suggests an approach to phase unwrapping known as quality-
guided path-following in which the integration path follows
the high-quality pixels and avoids the low-quality pixels.

Quality maps also play an important role in assigning ap-
propriate weights in some of the Minimum-norm algorithms.
Here small weights are assigned to noisy regions to reduce
the effect of noise.

To summarize, quality maps play a key role in the phase un-
wrapping process. Thus, it is an important task to develop
a reliable quality map.

2. CONVENTIONAL QUALITY MAPS
Quality maps essentially are arrays of values. They define
the quality (goodness) of each pixel of the given phase data.
There are many quality maps for guiding path-following
phase unwrapping algorithms. The most reliable quality
maps are:

• Correlation,
• Pseudo-Correlation,
• Phase Derivative Variance,
• Maximum Phase Gradient,
• Second Difference.

2.1 Correlation
Correlation quality map is specified only for SAR interfer-
ometry (InSAR) by the correlation coefficients of the InSAR
data. These coefficients are defined to be the magnitudes of
the complex-valued InSAR data. The correlation map is im-
portant because it is the best estimator of the quality of the
phase data extracted from the InSAR data.

For two SAR images um,n and vm,n, the complex-valued
InSAR image zm,n is defined by the following normalized
sum [7]:

zm,n =

∑
ui,jv

∗
i,j√∑ |ui,j |2

∑ |vi,j |2
, (2)

where v∗i,j is the complex conjugate of vi,j . The formation of
this sum, called “multilook averaging”, is performed in the
k × k neighborhood centered at each pixel (m, n). Corre-
lation quality map is defined by the correlation coefficients,
which are the magnitudes of the complex values zm,n in
Equation 2:

Qm,n = |zm,n|. (3)

2.2 Pseudo-Correlation (PSD)
Pseudo-correlation map is identical to the correlation map,
except the magnitude of the complex-valued data is assumed
to be unity. A pseudo-correlation map can be derived from
any phase data. It defines the goodness of each pixel using
the following equation:

Qm,n =

√(∑
cos ψi,j

)2
+

(∑
sin ψi,j

)2

k2
, (4)

1



where the sums are evaluated in k×k neighborhood of each
pixel (m, n), and ψi,j is the wrapped phase value of the pixel
(m, n).

In practice it is not such a good estimator of the phase
quality, which will be seen in Section 4.

2.3 Phase Derivative Variance (PDV)
The third quality map is the phase derivative variance qual-
ity map which shows the statistical variance of the phase
derivative. Each value of the PDV quality map indicates
the badness, rather than goodness, of the phase data.

The PDV quality map defines the goodness of each pixel by
the following equation:

Qm,n =
1

Bm,n
, (5)

where Qm,n is the quality of the pixel (m, n). Bm,n repre-
sents the badness of the pixel (m, n), which is given by the
following equation:

Bm,n =

√∑(
∆x

i,j −∆x
m,n

)2
+

√∑(
∆y

i,j −∆y
m,n

)2

k2
,

(6)

where the sums are evaluated in k×k neighborhood of each
pixel (m, n) centered in that pixel. The terms ∆x

i,j and ∆y
i,j

are wrapped phase derivatives in x and y directions:

∆x
i,j = W (ψi+1,j − ψi,j), (7)

∆y
i,j = W (ψi,j+1 − ψi,j), (8)

where W defines a wrapping operator that wraps values of
its argument into the range (−π, π]. The terms ∆x

m,n and
∆y

m,n are the mean values of the derivatives ∆x
i,j and ∆y

i,j

in a corresponding k × k window.

2.4 Maximum Phase Gradient (MPG)
The maximum phase gradient quality map measures the
magnitude of the largest phase gradient in a k × k neigh-
borhood of each pixel. The motivation for the definition of
MPG quality map is the observation that in noisy phase re-
gions, gradients tend to be large. Like PDV quality map,
MPG indicates the badness of the phase data which is given
by the following equation:

Bm,n = max

{
maxi,j{|∆x

i,j}|
maxi,j{|∆y

i,j}|
}

. (9)

The quality of each pixel Qm,n is then calculated using
Equation 5.

2.5 Second Difference (SD)
Second Difference quality map also indicates the badness of
each pixel, which is defined as follows:

Bm,n =
√

H2(i, j) + V 2(i, j), (10)

where H and V are the horizontal and vertical second dif-
ferences:

H(i, j) = W (ψi−1,j − ψi,j)−W (ψi,j − ψi+1,j), (11)

V (i, j) = W (ψi,j−1 − ψi,j)−W (ψi,j − ψi,j+1). (12)

The quality Qm,n of each pixel is again calculated using
Equation 5.

As it will be shown in Section 4, described quality maps
lead to completely different results when used with phase
unwrapping algorithms. That is why choosing an appropri-
ate quality map is a very important issue. In many cases
selection of the appropriate quality map for the given data
depends on the data itself. Experiments show that MPG
and PDV quality maps guide the phase unwrapping through
better unwrapping paths.

3. PROPOSED LAPLACIAN BASED QUAL-
ITY MAP

Let us consider a complex-valued exp of Equation 1:

eiψ = ei(φ+2πk) = eiφ. (13)

As it can be seen from Equation 13, the difference between
wrapped and unwrapped phases disappears. However the
transformed well-defined complex function called phasor F =
eiψ does not contain 2π jumps. Thus, it is convenient to use
F to derive a new quality map.

The proposed LF (Laplacian Filtering) quality map is de-
fined by the following equation:

B = |∇2F |, (14)

where ∇2 = ∂2

∂x2 + ∂2

∂y2 is a two dimensional Laplacian op-
erator.

Since the input wrapped data represents a set of discrete
pixels, the discrete implementation of the proposed quality
map should be discussed. It is known from image processing
[8], that linear filtering of an image F of size M ×N with a
filter mask w of size m× n is given by the expression:

g(x, y) =

a∑
s=−a

b∑
t=−b

w(s, t)F (x + s, y + t), (15)

where a = (m − 1)/2 and b = (n − 1)/2, and equation
is applied for x = 1, 2, . . . , M and y = 1, 2, . . . , N . Let us
notice that the coefficient w(0, 0) coincides with image value
F(x,y), indicating that the filter is centered at (x, y).

Laplacian filtering of an image highlights regions of rapid
intensity change and is therefore often used for edge detec-
tion. Digital implementation of the two-dimensional Lapla-
cian operator ∇2F is obtained by the following equation:

∇2F = [F (x + 1, y) + F (x− 1, y)

+F (x, y + 1) + F (x, y − 1)] (16)

−4F (x, y).

This equation can be implemented using the mask w shown
in Figure 1.

Figure 1. Discrete Laplacian Filter.
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Like PDV, MPG and SD quality maps, proposed map in-
dicates the badness of the phase data which is given as the
absolute value of the Laplacian filter response:

Bm,n =
√

Re2[g(x, y)] + Im2[g(x, y)]. (17)

The quality Qm,n of each pixel is calculated using Equation
5.

4. EXPERIMENTAL RESULTS
Let us focus on simulated data in order to evaluate the
advantages of the proposed quality map. As an accuracy
measure we use the root-mean-squared-error: RMSE =√

1
NxNy

∑(
φ(xs, ys)− φ̂(xs, ys)

)2
. As a discrete mask for

Laplacian filtering we use one presented in Figure 1.

To evaluate the proposed quality map we use the path-
following method presented in [9] to unwrap the simulated
phase data. Method was extended to use a quality map
for guiding the path. As a benchmark for comparison we
use the results of phase unwrapping obtained using four
conventional quality maps presented in Section 2: pseudo-
correlation (PC), maximum phase gradient (MPG), phase
derivative variance (PDV), and second difference (SD) qual-
ity map.

The Gaussian absolute phase test function, presented in Fig-
ure 2 (a), is defined by the following formula considered on
the integer grid x = (−64 : 63), y = (−64 : 63):

φ(x, y) = Aφe
− x2+y2

2σ2 , (18)

where Aφ = 14π and σ = 17.5.

Figure 2: Gaussian phase test function. (a) Original
absolute phase, (b) observed wrapped phase with
additive white Gaussian noise.

Figure 2 (b) illustrates the noisy wrapped phase data ob-
tained by wrapping the absolute phase and adding white
Gaussian noise. Figure 3 presents five quality maps used in
the experiment.

Table 1 contains numerical results of the used quality-guided
algorithm for different quality maps.

Table 1. Experimental Results

Quality Map RMSE

PSD 0.828

PDV 0.315

MPG 0.208

SD 5.4825

LF 0.182

Figure 4 illustrates the absolute phase reconstructed by the
unwrapping algorithm using four conventional quality maps
and the proposed Laplacian based map.

Figure 3: Five quality maps obtained from noisy
wrapped phase data. (a) PSD quality map, (b) PDV
quality map, (c) MPG quality map, (d) SD quality
map, (e) LF quality map.

Figure 4: Reconstructed phase images obtained us-
ing (a) PSD quality map, (b) PDV quality map, (c)
MPG quality map, (d) SD quality map, (e) LF qual-
ity map.
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The performed experiments show that the used unwrapping
algorithm demonstrates the best performance when using
the proposed LF quality map. It also can be seen, that
among the presented four conventional quality maps, MPG
and PDV are the most reliable ones.

5. CONCLUSIONS
In this paper five conventional quality maps were described
and an alternative quality map was proposed. The new qual-
ity map is based on Laplacian filtering of the wrapped phase
data. We have demonstrated that a new quality map for
quality-guided path-following phase unwrapping works ef-
fectively in comparison with the conventional quality maps.
It is shown that the proposed quality map is more reliable
than the PDV quality map, which is generally considered
as the most reliable measure of phase quality. Hence the
proposed LF quality map can be considered as a good phase
quality indicator.
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