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ABSTRACT 
The minimal linear arrangement problem (MinLA) is defined 

as follows: given a graph G, find a linear ordering for the 

vertices of G on a line such that the sum of the edge lengths is 

minimized over all orderings. The another graph layout 

problem, CUTWIDTH, asks, given a graph G, and a positive 

integer k, whether there exists a linear ordering of the vertices 

of G so that any line inserted between two consecutive 

vertices of the layout cuts (intersects with) at most k edges. 

The CUTWIDTH of the input graph is the smallest integer for 

which the question can be answered positively. In this paper a 

numbering is introduced for the Kneser graph K(n,r) when 

r=2 and proved that it is optimal both for MinLA and 

CUTWIDTH. 
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1. INTRODUCTION 
We consider undirected finite graphs with no loops or 

multiple edges. For a graph G=(V,E), we denote its vertex and 

edge set by V and E, respectively, with p=│V│ and q=│E│. In 

the following all undefined graph-theoretical terms can be 

found in [1].  

Consider two graph layout problems. Given a graph 

G=(V,E), a layout L is a one-to-one mapping L : V → 

{1,…,p}. For a given G=(V,E) and a layout L, set  
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An optimal linear arrangement of G is a layout which 

provides the minimum for the LA(G,L). We denote 

LA G = min𝐿 ( , )LA G L . LA(G) is also known as a 

wirelength of a graph G. 

For a given G=(V,E) and a subset  A ⊆V denote 

I(A)={(u,v) ∈E│u,v∈A} and θ(A)={(u,v) ∈E│u∈A, v∉A}. 

The first set includes all edges of the graph which both sides 

are in A, while the second set includes those edges which 

exactly one side is in A. We say that a subset A is optimal 

with respect to the function I (θ) if it provides the maximum 

(minimum) for │I(A)│ (respectively for │θ(A)│), taken over 

all subsets of V of the cardinality │A│. 
For a given G=(V,E) and a layout L, denote 𝑉𝑡

𝐿= {v
V│L(v) ≤ t}. We call 𝑉𝑡

𝐿 an initial segment with respect to 

layout L. The CUTWIDTH of a layout L is defined as 

CW(G,L) = max1≤𝑡≤𝑝−1 │𝜃 𝑉𝑡
𝐿 │  and its minimum over all 

layouts – as the cutwidth of G: CW(G) = min𝐿 𝐶𝑊 𝐺, 𝐿 .  
These two important graph layout problems were first 

proposed as models in circuit design ([2]), and more recently 

they have found applications in areas like protein engineering 

([3],[4]). Unfortunately both problems are NP-complete ([5])  

and they remain NP-complete even for certain classes of 

graphs. The MinLA is NP-complete for bipartite graphs and 

even for interval graphs. The CUTWIDTH is NP-complete for  

planar graphs with maximum degree 3, unit disk graphs, split 

 

graphs. On the other hand polynomial-time algorithms for the 

exact computation of these problems are known only for very 

few graph classes. We refer the reader to [6] for a survey of 

known results on the MinLA, CUTWIDTH and other graph 

layout problems. 

Harper in [7] introduced another expression for the 

LA(G,L): 
1

( , ) 1

( , ) ( ) ( ) ( ) (1)
p

L

t

u v E t

LA G L L u L v V


 

     

From this equation it is clear to see that if there is a 

layout for which all initial segments 𝑉𝑡
𝐿 are optimal with 

respect to θ, then such a layout will provide a minimum both 

for MinLA and CUTWIDTH. Not all graphs have such nice 

property (known as a nested solution [7]). For example, the 

binary n-cube ([7]), complete n-partite graphs ([8]) permit 

such ordering, but rectangular grids, torus - not ([9]). In this 

paper we show that the Kneser graph K(n,k) has a nested 

solution for k=2, and does not permit it for k>2 in general. 

 

2. Layout Problems for Kneser Graphs  
The Kneser graph K(n,r) (r < n/2) is the graph whose vertices 

are all subsets of the set {1,2,…, n} with the cardinality r, and 

two vertices are connected by an edge if and only if the 

corresponding subsets do not intersect. So K(n,r) has 𝐶𝑛
𝑟  

vertices and is a regular graph with the vertex degree 𝐶𝑛−𝑟
𝑟 . 

For example K(5,2) is the Petersen graph. It is easy to see that 

K(n,2) is the complement of the line graph of Kn. We will use 

this consideration in the proofs. Notice that the line graph of a 

graph G (denoted by L(G)) is a graph which vertices 

correspond to the edges of G and two vertices of L(G) are 

connected by an edge if  and only if the corresponding them 

edges in G are adjacent. 

For the simplicity let’s label vertices of Kn by numbers 

1,2,…,n. Then the vertices of K(n,2) can be represented as 

pairs (i,j), where i < j, and i,j∈{1,2,…,n}. The vertices (i,j) 

and (s,t) are incident if and only if all i,j,s,t are different. 

For a subset of vertices A of the K(n,2), denote    

βr(A)=│{(i,j)/ (i,j)∈A; i=r or j=r, i,j,r=1,2,…,n}│. 

Actually βr(A) is the number of vertices (i,j) ∈ 𝐴 which 

corresponding edges in Kn are adjacent to the vertex r. 

Let K(n,2)=(V,E) and │V│=p,│E│=q. The following 
lemma gives the complete description of optimal subsets of 

the K(n,2). 

Lemma. A subset A∈V is optimal with respect to function I if 

and only if │βi(A) - βj(A)│≤ 1 for all i,j =1,2,…,n. 
Proof. Consider a subset of vertices A∈V and let │A│=m. We 
are going to represent I(A) via m and βi(A)-s. Denote by Ω 

the spanning graph of Kn which includes only the edges 

corresponding to the vertices of A. It is easy to see that the 

vertices of Ω have the degrees β1(A), β2(A),…,βn(A). Note 

that in general some βi(A) can be 0.  

We will take an advantage of the Theorem 8.1 from the 

book of Harary ([1]), which stated that if G is a graph with p 



vertices and q edges and with vertex degrees d1,d2,…dp, then 

its line graph L(G) has q vertices and   
1

2
·  𝑑𝑖

2𝑝
𝑖=1  – q  edges.  

Following to this theorem the edge number of L(Ω) 

equals  
1

2
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2𝑚
𝑖=1  𝐴 −  𝑚. Consequently the edge number 

of its complement, i.e. of the subgraph induced by the vertices 

of A, equals: 
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which is just I(A), and to maximize it, we have to solve a 

simple optimization problem: minimize   𝛽𝑖
2𝑚

𝑖=1  𝐴   with 

constraints βi ≥ 0,  𝛽𝑖
𝑚
𝑖=1  𝐴 = 2 · 𝑚. Its integer-valued 

solution obviously is │βi(A) - βj(A)│≤ 1 for all i,j =1,2,…,n.  

It remains to construct a layout for the K(n,2), where 

each initial segment possesses the property described in 

Lemma. Here we will use factorizations of Kn.  

R-factorization of a graph is its decomposition into edge 

disjoint subgraphs (R-factors), in which each vertex is the 

endpoint of R edges. A graph is said to be R-factorable if it 

admits an R-factorization. In particular, 1-factor is a 

collection of disjoint edges, which together are incident on all 

vertices of the graph (also called – perfect matching). 2-factor 

is a collection of edges forming one or more disjoint circles 

which cover all vertices of the graph. We are interested in 1-

factorization of Kn when n is even and in its 2-factorization 

for the odd n.     

We will use two results from the book of Harary ([1]). 

Theorem 9.1. For an even n, Kn admits a 1-factorization. 

Theorem 9.6. For an odd n, Kn admits a 2-factorization, 

where each 2-factor is a spanning (Hamiltonian) circle. 

Consider a following f-ordering of K(n,2). First note that 

the proofs of above theorems are constructive and one can 

assume that factors are available. 

n is even. Let F1,F2,…,Fn-1 are 1-factors of Kn and L(F1), 

L(F2)…,   L(Fn-1) are corresponding to them vertex subsets 

of K(n,2). Obviously subgraphs induced by L(Fi)-s are cliques 

on  
𝑛

2
  vertices. Then in f-ordering L(Fi)-s are ordered one by 

one and occupy continuous segments of numbers while in 

each segment vertices of L(Fi)-s are ordered arbitrarily.  

n is odd. Let C1,C2,…,C(n-1)/2 are 2-factors (Hamiltonian 

circles of length n) of Kn and L(C1),L(C2),…, L(Cn-1) are 

corresponding to them vertex subsets of K(n,2). In f-ordering 

again L(Ci)-s are ordered one by one and occupy continuous 

segments of numbers. However L(Ci)-s require a special 

ordering. A circle consisting of vertices v1,v2,…vn and edges 

(v1,vn) and (vi,vi+1) for i=1,2,…,n-1, is ordered as the 

following: v1,v3,…vn-2, v2,v4,…vn-1,vn. 

It is easy to verify that for the f-ordering of K(n,2), each 

initial segment satisfies conditions of Lemma, i.e. is optimal 

with respect to the function I. It is easy to show that for 

regular graphs optimal subsets for the functions I and θ are the 

same: a subset is optimal with respect to the function I if and 

only if it is optimal with respect to θ. So each initial segment 

is optimal with respect to the function θ too. Hence with the 

equation (1) we can prove the following: 

Theorem-1. f-layout is optimal both for MinLA and 

CUTWIDTH problems for K(n,2). 

Unfortunately for r>2 the Kneser graphs K(n,r) in 

general have not nested solutions. For the sake of simplicity 

we will show this for n=r(r+1).  

Theorem-2. K(r(r+1),r) has not a nested solution. 

Proof. Maximal cliques of K(r(r+1),r) have the cardinality r+1 

and if the graph has a nested solution L, then obviously its 

each initial segment 𝑉𝑡
𝐿   (t ≤ r+1) should be a clique (to 

maximize I(𝑉𝑡
𝐿). Moreover, we will show that in this case the 

initial segment 𝑉𝑟(𝑟+1)
𝐿  should consist of r maximal cliques 

occupying continuous segments of numbers.  

Proposition. If L is a nested solution for K(r(r+1),r) then 

𝑉𝑟(𝑟+1)
𝐿  consists of r maximal cliques occupying continuous 

segments of numbers. 

Proof. It is easy to see that any vertex which does not belong 

to some maximal clique Kr+1, can have at most r-1 neighbors 

there. Next it is possible to construct r maximal cliques where 

any vertex from a clique has exactly r-1 neighbors from each 

other cliques. Let the first clique is  

[1,2,…,r+1], [r+2,…,2r+2],…,[(r-1)(r+1)+1,…,r(r+1)], 

the second is shifted cyclically on one position: 

[2,3,…,r+2], [r+3,…,2r+3],…,[(r-1)(r+1)+2,…,r(r+1),1], 

etc. The last, r-th clique is shifted cyclically from the previous 

(r-1)-th clique on one position:  

[r+1,r+2,…,2r+1], [2r+2,…,3r+2],…,[r(r+1),1,2,…,r]. 

It is easy to see that in this construction any vertex from 

a clique has exactly r-1 neighbors from each other clique.  

The proposition can be proved using the usual 

mathematical induction method. Let t is an integer from the 

interval [1; r(r+1)-1]. The proposition obviously is true for t ≤ 

r+1. Let it is true for some t = s(r+1)+z, where 1 ≤s ≤r-1 and 

0≤z ≤r. By the inductive assumption, 𝑉𝑡
𝐿 consists of s 

maximal cliques and a z-clique, all occupying continuous 

segments of numbers. Any vertex which does not belong to 

𝑉𝑡
𝐿 can have at most r-1 neighbors from maximal cliques of 

𝑉𝑡
𝐿 . So a vertex x, which has exactly r-1 neighbors and besides 

it is incident to all vertices of the z-clique of 𝑉𝑡
𝐿 will provide 

the maximal number of inner edges for the subgraph induced 

by the vertex set 𝑉𝑡
𝐿 ∪ {𝑥}. By the above construction there 

exists a vertex with such properties.  

Note that │I(𝑉𝑟(𝑟+1)
𝐿 )│=(r2-r+1)r(r+1)/2. Let’s show that  

𝑉𝑟(𝑟+1)
𝐿  is not optimal. The contradictory sample A containing 

r(r+1) vertices can be constructed as the following. Let’s 

partition the set {1,2,…,r(r+1)} into disjoint subsets:  

{1,2,…,r+1}, {r+2,…,2r+2},…,{(r-1)(r+1)+1,…,r(r+1)}, and 

take from each of them all its r-subsets. The subgraph induced 

by these vertices form a complete r-partite graph on r(r+1) 

vertices which has (r2-1)r(r+1)/2= I(𝐴) edges, which is greater 

than │I(𝑉𝑟(𝑟+1)
𝐿 )│=(r2-r+1)r(r+1)/2  for r>2.  
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