
New Efficient FFT with Fewer Operations

Hakob Sarukhanyan
Institute for Informatics and Automation Problems of NAS

of Armenia
Yerevan, Armenia

e-mail: hakop@ipia.sci.am

Rafayel Barseghyan
Institute for Informatics and Automation Problems of NAS

of Armenia
Yerevan, Armenia

e-mail: barseghyan@gmail.com

ABSTRACT
In this paper we suggest a simple recursive modification of
2p−point Fast Fourier transform algorithm with fewer arith-
metic operations.Required number of operations are the best
up to 220. Algorithm for real-data and real-symmetric (dis-
crete cosine) transforms with fewer arithmetic operations
can be easily derive from our algorithm.

Keywords
FFT, DFT, complexity,flops.

1. INTRODUCTION
Applications of linear transforms, such as Fourier, Hadamard,
Cosine and Sine transforms in signal and image processing
are numerous [1]. Cooley and Tukey published their his-
toric paper on the computation of the Fourier transform
in 1965. Overnight, in universities and laboratories around
the world, scientists and engineers began developing com-
puter programs and electronic circuits to implement the
FFT. The FFT is a brilliant technique for computing the
discrete Fourier (DFT) transform quickly. By recognizing
that the Fourier transform of a sequence can be derived from
the Fourier transforms of two half length sequences more
economically than if the whole sequence is transformed di-
rectly and by carrying this concept through to its logical
conclusion of evaluating only the direct transform of se-
quences of two terms, Cooley and Tukey showed that the
FFT required only O(N log N) operations while the direct
form took O(N2) operations.Any improvement in FFT al-
gorithms appears to rely on reducing the exact number or
cost of these operations rather than their asymptotic func-
tional form [2]. For many years, the time to perform an FFT
was dominated by real-number arithmetic, and so consider-
able effort was devoted towards proving and achieving lower
bounds on the exact count of arithmetic operations (real
additions and multiplications),called “flops” (floating-point
operations), required for a DFT of a given size [3],[4]. Al-
though the performance of FFTs on recent computer hard-
ware is determined by many factors besides pure arithmetic
counts, there still remains an intriguing unsolved mathemat-
ical question: what is the smallest number of flops required
to compute a DFT of a given size N?

2. 1D2P−POINT FFT

2.1 Conventional Case
Let x = {x0, x1, . . . , xN−1}T be a complex valued column-
vector of length N (N = 2p). The forward and inverse 1D

DFT of this vector are defined as

X[n] =
1

N

N−1
∑

k=0

x[k]W nk
N ,

x[k] =

N−1
∑

n=0

X[n]W−nk
N , n = 0, N − 1,

(1)

where W n
N = exp

(

−j 2π
N

n
)

= cos(2π
N

n) − j sin(2π
N

n), j =√
−1.

Represent the forward transform as follows (here and later
the coefficient 1/N is omitted)

X[n] =

N/2−1
∑

k=0

x[2k]W nk
N/2 + W n

N

N/2−1
∑

k=0

x[2k + 1]W nk
N/2, (2)

where n = 0, N − 1.

Introduce the notations:

Y0[n] =

N/2−1
∑

k=0

x[2k]W nk
N/2,

Y1[n] =

N/2−1
∑

k=0

x[2k + 1]W nk
N/2, n = 0, N/2 − 1.

(3)

Note that Y0[n] and Y1[n] are N/2−point forward DFT.

Hence, the equation (2) can be represented as follows

X[n] = Y0[n] + W n
NY1[n],

X[n + N/2] = Y0[n] − W n
NY1[n], n = 0, N/2 − 1.

(4)

It is easy to show that

W 0
N = 1, W

N/8

N =
√

2

2
(1 − j),

W
N/4

N = −j, W
3N/8

N = −
√

2

2
(1 + j).

Therefore, the realization of W n
NY1[n], for all n needs only

N − 4 real addition and 2N − 12 real multiplication oper-
ations. Storing this results we can calculate the necessary
operations for N−point DFT given in equation (4), i.e. we
obtain

C+
N = 3N − 4 + 2C+

N/2
,

C×
N = 2N − 12 + 2C×

N/2
,

(5)

where C+
N and C×

N denotes the number of additions and
multiplications of N−point DFT, respectively.

1

Finally, from relations (5) we can obtain

C+
N = 3N log2 N − 3N + 4,

C×
N = 2N log2 N − 7N + 12, N ≥ 8.

(6)

Note that C+
2 = 4, C×

2 = 0, C+
4 = 16, C×

4 = 0. In the next
table some numerical results are given

Table 1
N Add Mul Total
2 4 0 4
4 16 0 16
8 52 4 56
16 148 28 176
32 388 108 496
64 964 332 1296
128 2308 908 3216
256 5380 2316 7696
512 12292 5644 17936
1024 27652 13324 40976
2048 61444 30732 92176
4096 135172 69644 204816
8192 294916 155660 450576
16384 638980 344076 983056
32768 1376260 753676 2129936

3. MODIFIED FFT
3.1 Conventional Case
Let x = {x0, x1, . . . , xN−1}T be a complex valued column-
vector of length N (N = 2p). The DFT of this vector can
be represented as (the coefficient 1/N is omitted)

X[n] =

N

2
−1

∑

k=0

x[2k]W nk
N

2

+ W n
N

N

4
−1

∑

k=0

x[4k + 1]W nk
N

4

+W 3n
N

N

4
−1

∑

k=0

x[4k + 3]W nk
N

4

,

(7)

where n = 0, N − 1.

It is not difficult to show that with assumption
x[−1] = x[N − 1] we have

W 3n
N

N

4
−1

∑

k=0

x[4k + 3]W nk
N

4

= W−n
N

N

4
−1

∑

k=0

x[4k − 1]W nk
N

4

.

Therefore the equation (7) we can rewrite as following

X[n] =

N

2
−1

∑

k=0

x[4k]W nk
N

2

+ W n
N

N

4
−1

∑

k=0

x[4k + 1]W nk
N

4

+W−n
N

N

4
−1

∑

k=0

x[4k − 1]W nk
N

4

,

(8)

where n = 0, N − 1.

Introduce the following notations:

An
N = W n

NY1[n] + W−n
N Y2[n],

Sn
N = W n

NY1[n] − W−n
N Y2[n], n = 0, N/4 − 1;

Y0[n] =

N/2−1
∑

k=0

x[4k]W nk
N/2, n = 0, N/2 − 1;

Y1[n] =

N/4−1
∑

k=0

x[4k + 1]W nk
N/4, ,

Y2[n] =

N/4−1
∑

k=0

x[4k − 1]W nk
N/4, n = 0, N/4 − 1.

(9)

Hence, N = 2p−point DFT can be computed by the follow-
ing formulae

X[n] = Y0[n] + An
N ,

X[n + N
4

] = Y0[n + N
4

] − jSn
N ,

X[n + 2N
4

] = Y0[n] − An
N ,

X[n + 3N
4

] = Y0[n + N
4

] + jSn
N , n = 0, N/4 − 1.

(10)

3.2 Complexity Evaluation
Now we calculate the necessary operations for DFT which
presented in (10). At first using the properties of exponential
function W we have

W 0
N = 1, W

N/8

N =

√
2

2
(1 − j).

Therefore, the realization of An
N required 3

2
N−4 and 2N−12

addition and multiplication operations, respectively. The
realization of Sn

N required only N/2 additions.

Thus, the necessary operations for realization N−point DFT
presented in (10) can be obtained from following formulae

C+
N = 4N − 4 + C+

N/2
+ 2C+

N/4
,

C×
N = 2N − 12 + C×

N/2
+ 2C×

N/4
, N ≥ 8.

(11)

Using theory of difference equations [5] we obtain

C+
N = 8

3
N log2 N − 16

9
N − 2

9
(−1)log2 N + 2,

C×
N = 4

3
N log2 N − 38

9
N + 2

9
(−1)log2 N + 6.

(12)

In the Table 2 some numerical results are given

Table 2
N Add Mul Total
2 4 0 4
4 16 0 16
8 52 4 56
16 144 24 168
32 372 84 456
64 912 248 1160
128 2164 660 2824
256 5008 1656 6664
512 11380 3988 15368
1024 25488 9336 34824
2048 56436 21396 77832
4096 123792 48248 172040
8192 269428 107412 376840
16384 582544 236664 819208
32768 1252468 517012 1769480

4. NEW FFT ALGORITHM WITH FEWER
FLOPS

4.1 Efficient Implementation of FFT
We will perform DFT by two step. At first we introduce
some notations:

TN,n =
[

1 − j tan 2π
N

n
]

,

P n
N/4 = W n

N cos(2π
N/4

n)Y1[n] + W−n
N cos(2π

N/4
n)Y2[n],

Qn
N/4 = W n

N cos(2π
N/4

n)Y1[n] − W−n
N cos(2π

N/4
n)Y2[n],

(13)

where Y1[n], Y2[n] given in (9). Note that

W n
N = TN,n cos

2π

N
n.

Now Using this notations now we represent N = 2p−point
DFT from (10) by the following two steps

2

Step 1: n = 0, 1, . . . , N/4 − 1.

X[n] = Y0[n] + P n
N/4,

X[n + N
4

] = Y0[n + N
4

] − jQn
N/4,

X[n + 2N
4

] = Y0[n] − P n
N/4,

X[n + 3N
4

] = Y0[n + N
4

] + jQn
N/4;

(14)

Step 2: n = 0, 1, . . . , N/16 − 1.

Y1[n] = Y10[n]/ cos 2π
N/4

n

+(TN/4,nY11[n] + T ∗
N/4,nY12[n]),

Y1[n + N
16

] = Y10[n + N
16

]/ cos 2π
N/4

n

−j(TN/4,nY11[n] − T ∗
N/4,nY12[n]),

Y1[n + 2N
16

] = Y10[n] cos 2π
N/4

n

−(TN/4,nY11[n] + T ∗
N/4,nY12[n]),

Y1[n + 3N
16

] = Y10[n + N
16

]/ cos 2π
N/4

n

+j(TN/4,nY11[n] − T ∗
N/4,nY12[n]),

(15)

Y2[n] = Y20[n]/ cos 2π
N/4

n

+(TN/4,nY21[n] + T ∗
N/4,nY22[n]),

Y2[n + N
16

] = Y20[n + N
16

]/ cos 2π
N/4

n

−j(TN/4,nY21[n] − T ∗
N/4,nY22[n]),

Y2[n + 2N
16

] = Y20[n] cos 2π
N/4

n

−(TN/4,nY21[n] + T ∗
N/4,nY22[n]),

Y2[n + 3N
16

] = Y20[n + N
16

]/ cos 2π
N/4

n

+j(TN/4,nY21[n] − T ∗
N/4,nY22[n]),

(16)

4.2 Complexity evaluation
Now we calculate the necessary operations for DFT which
presented in (14)-(16). At first using the properties of cosine
and exponential functions we obtain

W n
N cos

2π

N/4
n =

1, if n = 0

−
√

2

2
(1 − j), if n = n/8,
0, if n = N/16,
0, if n = 3N/16,

(17)

where n = 0, 1, . . . , N/4 − 1.

For n = 0, 1, . . . , N/16 − 1 we have

cos 2π
N/4

n =

{

1, if n = 0,
√

2

2
, if n = N/32,

TN/4,n =

{

1, if n = 0,
1 − j, if n = N/32.

(18)

Using the results of equations (17) and (18) we can de-
fine the necessary real operations for computing the terms
P n

N/4, Qn
N/4, W n

N cos 2π
N/4

nY1[n], and W−n
N cos 2π

N/4
nY2[n] for

all n = 0, N/4 − 1 without taking the operations for Y1[n]
and Y2[n] (see Table 3).

Table 3
Expression Add Mul

W n
N cos 2π

N/4
nY1[n] 1

2
N − 6 N − 14

W−n
N cos 2π

N/4
nY2[n] 1

2
N − 6 N − 14

P n
N/4

3

2
N − 16 2N − 28

Qn
N/4

1

2
N − 4 0

Therefore, again without taking the operations for Y0[n],
Y1[n], and Y2[n], and using the results of Table 3 we can
calculate the necessary real operations for computing the
terms X[n], X[n + N

4
], X[n + 2N

4
], and X[n + 3N

4
] from

equation (14) for all n = 0, N/4 − 1(see Table 4).

Table 4
Expression Add Mul

X[n] 2N − 20 2N − 28

X[n + N
4

] N − 8 0

X[n + 2N
4

] 1

2
N − 4 0

X[n + 3N
4

] 1

2
N − 4 0

Now we can calculate the number of real operations for com-
puting all component X[n] (n = 0, N − 1, N ≥ 16)

C+
X = 4N − 36 + C+

Y0
+ C+

Y1
+ C+

Y2
,

C×
X = 2N − 28 + C×

Y0
+ C×

Y1
+ C×

Y2
,

(19)

where C+
Y0

and C×
Y0

are the complexity of N/2−point DFT,

and C+
Y1

, C×
Y1

and C+
Y2

, C×
Y2

are the complexity of transforms

given in (15) and (16), respectively.

Now we define the necessary real operations for the terms

TN/4,nY11[n] ± T ∗
N/4,nY12[n], TN/4,nY21[n] ± T ∗

N/4,nY22[n]

without taking the operations for terms Y11[n], Y12[n], Y21[n],
and Y22[n] (see (15) and (16).

At first we have

TN/4,0 = 1, TN/4,N/32 = 1 − j.

Hence, we obtain

Table 5
Expression Add Mul

TN/4,nY11[n] + T ∗
N/4,nY12[n] 3

8
N − 4 1

4
N − 8

TN/4,nY11[n] − T ∗
N/4,nY12[n] 1

8
N 0

TN/4,nY21[n] + T ∗
N/4,nY22[n] 3

8
N − 4 1

4
N − 8

TN/4,nY21[n] − T ∗
N/4,nY22[n] 1

8
N 0

Now using the results of Table 5 without taking the opera-
tions for Yi,j [n], i, j = 0, 1, 2 (see (15) and (16) we can define

the operations for realization of Y1[n], n = 0, N/4 − 1 (see
Table below).

Table 6
Expression Add Mul

Y1[n] 1

2
N − 4 3

8
N − 10

Y1[n + N
16

] 1

4
N 1

8
N − 2

Y1[n + 2N
16

] 1

8
N 0

Y1[n + 3N
16

] 1

8
N 0

Note that for Y2[n] number of required operations is the
same as for Y1[n]. Now using the results of Table 6 we can
calculate the number of real operations for computing all
components of Y1[n] and Y2[n] (n = 0, N/4 − 1, N ≥ 32)

C+
Y1

= N − 4 + C+
Y10

+ C+
Y11

+ C+
Y12

,

C×
Y1

= 1

2
N − 12 + C×

Y10
+ C×

Y11
+ C×

Y12
,

(20)

3

It is not difficult to show that

C+
X = C+

N , C×
X = C×

N ,

C+
Y0

= C+

N/2
, C×

Y0
= C×

N/2
,

C+
Y10

= C+
Y20

= C+

N/8
,

C×
Y10

= C×
Y20

= C×
N/8

,

C+
Y11

= C+
Y21

= C+
Y12

= C+
Y22

= C+

N/16
,

C×
Y11

= C×
Y21

= C×
Y12

= C×
Y22

= C×
N/16

.

(21)

Finally using the equations (19),(20) and the identities (21)
we obtain the complexity of N−point DFT as

C+
N = 6N − 44 + C+

N/2
+ 2C+

N/8
+ 4C+

N/16
,

C×
N = 3N − 52 + C×

N/2
+ 2C×

N/8
+ 4C×

N/16
.

(22)

Optimization by hand for N = 16 has allowed us to save
40-additions and 16-multiplications in comparison with al-
gorithm 3 (see, section 3). Using these results and relations
(22) we can obtain

C+
N = 8

3
N log2 N − 34

9
N − 2α+

N

√
N

− 26

9
(−1)log2 N + 22

3
,

C×
N = 4

3
N log2 N − 46

9
N − 8

9
α×

N

√
N

− 2

3
(−1)log2 N + 26

3
.

(23)

Values of α+
N and α×

N are defined below

log
2

N(mod 4) α+
N α×

N

0 4

3
1

1
√

2
√

2
2 − 4

3
−1

3 −
√

2 −
√

2

In the Table 7 some numerical results are given.

Table 7
N Add Mul Total
16 104 8 112
32 300 52 352
64 808 200 1008
128 1948 564 2512
256 4456 1416 5872
512 10300 3508 13808
1024 23528 8456 31984
2048 52476 19636 72112
4096 115432 44552 159984
8192 252796 100020 352816
16384 550120 222216 772336
32768 1187452 488116 1675568

5. COMPARISON RESULTS
In 2007 Steven Johnson and Matteo Frigo presented [3] new
FFT algorithm which has fewer arithmetic operations than
all known FFT algorithms. Algorithm 4 yields savings over
their method starting at N = 24 to N < 2020, as summa-
rized in Table 8.

Table 8
N Add Add Mul Mul Total Total
64 808 912 200 240 1008 1152
128 1948 2164 564 628 2512 2792
256 4456 5008 1416 1544 5872 6552
512 10300 11380 3508 3668 13808 15048
1024 23528 25488 8456 8480 31984 33968
2048 52476 56436 19636 19252 72112 75688
4096 115432 123792 44552 43064 159984 166856
8192 252796 269428 100020 95252 352816 364680
16384 550120 582544 222216 208720 772336 791264

Graphical presentation of comparison results for algorithm
4, Johnson-Frigo algorithm and algorithm 3 given below

Figure 1: Flop counts of algorithm 4, Johnson-Frigo

algorithm, algorithm 3.

6. CONCLUSION
We have introduced a simple, recursive algorithm for the
computation of the discrete Fourier transform for N = 2p.
The results obtained in Section 3 are the best among the
FFT-algorithms (N < 220) for N = 2p. The number of
flops can be reduced with manual optimization for higher
values of N = 32,64,128,etc.Required flops and comparison
with [3] are summarized in Table 8 and Figure 1.Algorithm
for real-data and real-symmetric (discrete cosine) transforms
with fewer arithmetic operations can be easily derive from
our algorithm. In the future we want to reduce number of
operations and create framework for parallel computation
FFT.

REFERENCES
[1] A.K.Jain. Fundamentals of Digital Image Processing.

Prentice-Hall Inc., Englewood Cliffs, 1989.

[2] P. Duhamel and M. Vetterli, Fast Fourier transforms:
a tutorial review and a state of the art, Signal
Processing - Apr. 1990, vol. 19, pp. 259299.

[3] M. Frigo and S. G. Johnson, ”A modified split-radix
FFT with fewer arithmetic operations, IEEE TRANS.
SIGNAL PROCESSING” - vol. 55, pp. 111-119, 2207.

[4] H.Sarukhanyan, S.Agaian, Conventional, Integer to
Integer and Quantized Fast Fourier Transforms, CSIT
2007, pp. 204-207.

[5] Petrovski I.G. Lectures on the theory of ordinary
differential equations (in russian),1984.

4

