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ABSTRACT 
We extend the existing methods of calculation of 

multiloop Feynman diagram integrals by using the parallel 
computing methods, which are included in new mathematical 
packages and are allowed by multi core processors, cluster 
systems. This letter is explaining the numerical calculation 
methods which will be programmed for parallel multi core 
computing. The main methods are the Laporta’s algorithm for 
automatic integral reduction for higher order perturbative 
calculations, the sector decomposition method for reduction 
of overlapping infrared divergences, and the Mellin−Barnes 
representation for the integration of integrals containing 

( )1 x y α+  integrands. 
All the descriptions of these methods will be shown on 

the example of sB X→ γ  decay at ( )2
sO α . More precisely, 

on the example of charm quark mass dependence of the 
interference of electromagnetic and chromomagnetic dipole 
operators contribution to sB X→ γ  at ( )2

sO α . 
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1. INTRODUCTION 

As a flavour changing neutral current process the 
inclusive decay sB X→ γ  is loop-induced and therefore 
highly sensitive to new degrees of freedom beyond the 
Standard Model. To tap the full potential of this decay 
channel in deriving constraints on the parameter space of new 
physics models both the experiments and the Standard Model 
calculations should be known as accurately as possible. 

On the experimental side, the latest measurements are 
reported in [1,2] by Belle and BABAR, and the world average 
performed by the Heavy Flavor Averaging Group [3] for 

1.6Eγ > GeV reads 

( ) 4(3.52 0.23 0.09) 10sBr B X −→ γ = ± ± ×  (1.1) 
where the errors are statistical and systematical due to the 
extrapolation to the common lower-cut in the photon energy, 
and due to the dB X→ γ contamination, respectively. 

In order to compete with the given experimental 
accuracy the theoretical prediction of the sB X→ γ  branching 
ratio has to be known at the next-to-next-to-leading order 
(NNLO) level. There have been great efforts of several groups 
within the last few years to achieve this goal. The three-loop 
dipole operator matching was found in [4], the three-loop 
mixing of the four-quark operators in [5], and the three-loop 
mixing of the dipole operators was calculated in [6]. 
Furthermore, the four-loop mixing of the four-quark operators 
into the dipole operators was calculated in [7]. The two-loop 

matrix elements of the electromagnetic dipole operator 
together with the corresponding bremsstrahlung terms can be 
found in [8-11]. The three-loop matrix elements of the four-
quark operators are given in [12] within the so-called large-

0β  approximation. The calculation that goes beyond this 
approximation by employing an interpolation in the charm 
quark mass cm  is presented in [13]. The combination of all 
these individual contributions culminated in a first estimate of 
the sB X→ γ  branching ratio at ( )2

sO α  [14]. For 

1.6Eγ > GeV it reads 

( ) 4(3.15 0.23) 10sBr B X −→ γ = ± ×  (1.2) 
Herein, we should mention that there are several 

perturbative and non-perturbative effects that have not been 
considered when deriving this estimation.  

In the present Letter we calculate the charm quark mass 
dependence of the ( )7 8,O O -interference contribution to the 

photon energy spectrum ( )partonic
sd b X dEγΓ → γ  and the total 

decay width ( )partonic
sb XΓ → γ , excluding charm quarks in the 

final state. The impact of the cm -dependence on the 
branching ratio will be taken into account together with other 
new contributions in the forthcoming analysis. 

The organization of this Letter is as follows. In the 
Section 2 the calculation methods on the example of 

sB X→ γ  decay at ( )2
sO α  are fully and precisely described 

step by step. The second section is fragmented into the 
calculation procedures and methods used. 
 
2. CALCULATION PROCEDURE AND 
METHODS 
2.1. Feynman diagrams 

For the ( )7 8,O O  interference of the partonic b s→ γ  
decay we need six Feynman diagrams which are shown in Fig 
1. 

 
Fig. 1. Diagrams of 8O  chromomagnetic dipole operator 
contributing to b s→ γ  decay. 



Consider diagram R2 from Fig 1 for a detailed view. All 
the notations of R2 are shown in Fig 2. 

 
Fig. 2. Diagram R2 from Fig 1. Notations: 1 2, , , ,b sp p r r k  − 
four momentum of b-quark, s-quark, gluon, с-quark, photon 
correspondingly. 8O  − chromomagnetic operator, *

7O  − 
complex conjugate electromagnetic operator. 
 

Using the diagram, we can write the Dirac expression for 
it. The rest of this section will be devoted to the description of 
the methods for calculating the Dirac expression. 

 
2.2. Manipulating Dirac expression 

The Dirac expression needs to be calculated. To do so we 
need to bring the expression to the form suitable for 
integration by the loop integrals. 

At first, the numerator of integrand should be simplified. 
For that we use MatrixExp or Tracer packages.  

As a second step we denote the propagators of 
denominator as follows: 
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Here P1-P5 are the real propagators from the fig. 2 and 
the P5-P9 are denoted as fictive propagators of some scalar 
products from the numerator of integrand. 

By the use of programs (programmed in Mathematica) 
we represent the numerator and denominator via (2.1) 
propagators P1-P9. Part of the result is shown in (2.2).  
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The loop integrations are still present in (2.2).  
 
2.3. Automatic Integral Reduction (AIR) 

Two types of computations are generally required for the 
evaluation of cross-sections and decay rates: loop integrations 
over the momenta of virtual particles, and phase-space 
integrations over the momenta of particles in the final state. 
At higher orders, in perturbation theory both are hard tasks; 
this is primarily due to a large number of integrals. 
Unfortunately, methods for the analytic computation of loop 
and phase-space integrals are complicated. A solution to this 
problem is to construct algorithms which reduce the number 
of integrals to a few master integrals, and directly calculate 
the master integrals only. 

The method of integration by parts (IBP) for the 
reduction of loop integrals was introduced in [15]. Integrals 
which have common propagators (or, equivalently, belong to 
the same topology) satisfy linear algebraic identities. These 
identities can be derived with the IBP method and can be 
cleverly combined to produce reduction identities to master 
integrals. Laporta has improved this method and proposed a 
fully automated method for the reduction of generic loop 
amplitudes [16]. The algorithm proposed by Laporta has 

already been used in a variety of calculations. However its 
efficient implementation in the computer program is not 
trivial. The main difficulties arise from the fact that typical 
multiloop calculations require an enormous number of IBP/LI 
equations (105−106). In the process of Gauss elimination the 
algorithm can produce very large expressions; one must 
optimize for their efficient manipulation.  

Now there is a program written in MAPLE (by 
Anastasiou, Lazopolous) based on the method of [16], for the 
Automatic Integral Reduction at higher orders in perturbation 
theory. The user should supply template IBP/LI equations for 
the integrals of a topology, optional information on the 
vanishing integrals of the topology and the master integrals (if 
known), and a small number of parameters controlling the 
treatment of large expressions. There is no need for advanced 
knowledge of the MAPLE platform. The input can be 
supplied with easy to modify text files, and AIR can be 
controlled with very simple scripts. But for more efficient use 
of this algorithm, we suppose to write a new one to parallelise 
all the processes described above for faster and more efficient 
use of multi core architectures. 

The details of the calculation of the abovementioned 
example will be shown beneath. The terms of P1-P9 
propagators in (2.2) fractions are raised to positive or negative 
powers, they will be denoted as iν . It will be useful to know 
the values of the parameters iν  for which the corresponding 
integrals vanish (tadpoles, scale-less bubbles). This 
information is not formally required; by solving the IBP 
equations one will eventually find that tadpoles, etc, are 
indeed vanishing. However, it is more efficient for the 
reduction to utilize the fact that many terms in the IBP 
equations are zero. We call the 
( )1 2 3 4 5 6 7 8 9, , , , , , , ,B ν ν ν ν ν ν ν ν ν  as master-integrals. 

Now we proceed to find algebraic equations for the 
integrals of the box topology. The easy way to derive such 
identities is the IBP method [15]; we multiply the integrand 
with a loop or external momentum and differentiate it with the 
loop momentum. These total derivatives integrate to zero. 12 
IBP identities are obtained. 

In summary, the algorithm requires a successive 
generation of identities with terms of increasing complexity. 
The newly added equations usually contain terms which are 
also found in equations generated at earlier stages; this 
produces small subsystems of coupled algebraic identities. A 
series of substitutions diagonalizes these algebraic subsystems 
and yields complicated integrals expressed in terms of master 
integrals. The algorithm is a clever implementation of Gauss 
elimination. It exploits the fact that Feynman integrals can be 
ordered according to a very simple criteria. 

In the case of our Feynman diagram, after all the 
mentioned procedures, eventually we obtain 7 (seven) master-
integrals to integrate. 

It is possible and we intend to write a program, such as 
AIR, for parallel computing, which will be more efficient, as 
for obtaining these seven master-integrals in one core case 8 
hours of computer calculations are required. 

For calculating these seven master-integrals, we need to 
use the method described below. 
 
2.4. Sector Decomposition 

Sector decomposition is a constructive procedure to 
separate overlapping infrared divergences in multiloop 
integrals. Working with parametric representation in 

4 2d = − ε  dimensions, adequate subtractions lead to the 
Laurent series in ε , where the coefficients of the pole and 
finite terms are sums of regular parameter integrals that can 
be evaluated numerically. This algorithm fully automates by 
implementing it into algebraic manipulation programs and is 



applied to calculate some nontrivial 2-loop 4-point and 3-loop 
3-point Feynman diagrams numerically . 

In perturbative QCD, the calculation of infrared safe 
quantities has to be organized in such a way that the infrared 
poles stemming from virtual and real higher order corrections 
cancel.  

The IR singularity structure of higher-loop Feynman 
diagrams was investigated in four dimensions, and later in 
[18] in the context of dimensional regularization and 
factorization in QCD. Working in dimensional regularization, 
subtraction procedures are well known for UV poles, and also 
for IR divergences present in Euclidean space (see e.g. [18]). 
On the other hand, no general subtraction scheme for soft and 
collinear IR singularities arising in Minkowski space is 
known for individual graphs. The method we present in this 
paper has been designed to isolate poles in the dimensional 
regulator ε  for an arbitrary Feynman graph. Although the 
method works also for one-loop integrals, its virtues show up 
rather in two– or higher loop integrals with N ≥ 3 external 
legs, at least one of them being massless. It allows one to 
disentangle the overlapping soft and collinear divergent 
regions in Feynman parameter space by dividing the latter 
into sectors where parameters can get singular only in an 
independent manner. Then, by adding and subtracting 
adequate counterterms, one can isolate the singular parts and 
perform the integrations over the corresponding parameters 
analytically. The remaining regular integrals are in general too 
complex for analytical integration, but they can be integrated 
numerically. This procedure is quite general and can in 
principle be applied to graphs with an arbitrary number of 
loops and legs, the limitations being only disk space and 
computing time. 

By using sector decomposition method we obtain 
numerical results for all master-integrals.  

There are the largest opportunities for the use of 
parallelizing in this section. It is possible to simultaneously 
compute every single master-integral, and certainly, at the 
same time calculate different sectors of each master-
integral decomposed by the method.  
 
2.5. Mellin-Barnes representation 

To solve integrals obtained after Feynman 
parameterisation, which contain denominators of the form 

( )2 2
1 2

1

c bm P m P
α

+
, (2.3) 

where P1 and P2 are polynomials in the Feynman parameters, 
we need to apply Mellin–Barnes representation [19] 
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= =
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where the integration contour C runs from −i∞ to +i∞ in a 
way that it separates the poles generated by the two functions. 
This representation proves to be useful because then the 
integration over the Feynman parameters becomes trivial. 
Finally, we close the integration contour C by a half-circle 
with infinite radius at either of the sides and sum up the 
enclosed residues.  
 
3. SUMMARY 

In this paper we presented the numerical calculation 
methods for multiloop Feynman diagram integrals, described 
numerical methods which can be parallelized using multicore 
processors in more details. The description of these methods 
are shown on the example of sB X→ γ  decay at ( )2

sO α . 
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