
Extendible C++ Application in Photonic Technologies based on
Parallel Computing

Tigran, Gevorgyan
Institute for Physical Research,
National Academy of Sciences,

Ashtarak, Armenia

e-mail: t gevorgyan@ysu.am

Anna, Shahinyan
Yerevan State University,

Yerevan, Armenia

e-mail: anna shahinyan@ysu.am

Gagik, Kryuchkyan
Yerevan State University,

Yerevan, Armenia

e-mail: kryuchkyan@.ysu.am

ABSTRACT
We provide an application for numerical simulations and
modelling of complex quantum systems in the presence of
dissipation and decoherence in area of Quantum Optics. The
basic idea of framework is to allow users to build arbitrar-
ily complex interacting quantum systems from elementary
free subsystems and interactions between them, and simu-
late their time evolution with a number of available time-
evolution drivers. It is very sensitive to performance both in
terms of computer resources and coding/design. In the lat-
ter aspect the goal, as always in software design, is to create
maximally reusable code. The application is extendible for
C++ programmers and is user-friendly, it does not require
any programming knowledge as has a graphical user inter-
face. The framework provides wide range of applications in
quantum optics. It can be used for numerical calculation
density matrix of the system, quasidistributions, Poincaré
section, and fidelity both for pure and mixed states. Stan-
dard algebraic notation is used to build operators and to per-
form arithmetic operations on operators and states. States
can be represented in different basis (Fock, coherent, etc.).
The package is available also for clusters.

1. INTRODUCTION
In last twenty years quantum physics gained technological
interest but theoretical science is not always able to answer
questions that are possed by engineers as well as analyt-
ical solutions are not always exist. But the technological
progress of last years in computer science opened a new area
in physics: modelling of physical processes. Computers de-
velopment till super-computers and clusters gets possible to
solve problems numerically that were not possible to solve
before. Theoretical results become more realistic with phys-
ical process modelling. In this paper, we provide a new
application that gets possible to solve problems for quan-
tum systems that are constructed from bosons, including
laser and photonic processes in nonlinear media in the pres-
ence of quantum noise. There are some papers that solve
the same problems [1], [2], [3], [4]. All of them are based
on the numerical method of quantum trajectories for cal-
culation of the master equation for a density matrix and
require somehow programming knowledge. In this paper we
essentially expand these results by adding the application
as it has user-friendly graphical user interface on one side
and we tried to solve not only master equation but also pro-
vide some other utilities of Quantum Optics to investigate
physical systems like Poincaré section, quasi-distributions,
fidelity on the other side. The only C++ knowledge is re-
quired if user wants to extend the application field of the

program. There are provided some extension facilities, like
input file format modification, adding new state definition
for fidelity calculation. Behavior of physical objects can be
explained and predicted with system of differential equa-
tions. In recent years quantum physics has taken on special
significance and wide applications and it is no longer possi-
ble to neglect the environment interaction: dissipation and
decoherence. These are treated as open systems that cannot
be described by a Hilbert-space vector |Ψ〉 which evaluation
is described by Schrodinger equation, but by a density ma-
trix which time evaluation is described by master equation.
In general the master equation has no analytical solution for
arbitrary evaluation times. One of widely used approxima-
tions is Markovian dynamics described in terms of Lindblad
master equation for the reduced density matrix ρ

dρ

dt
=

−i
h̄

[H,ρ]+
∑

i=1,2

(

LiρL
+
i − 1

2
L+

i Liρ− 1

2
ρL+

i Li

)

, (1)

where H is the Hamiltonian of the system and Li are Lind-
blad operators representing the environment interaction. The
numerical solution of the Eq. 1 is also hard because of lim-
ited computer resources as if state requiresD basis vectors in
Hilbert space for representation, the density matrix will re-
quire D2 −1 basis. This problem is overcame by unravelling
the density operator evaluation into quantum trajectories

ρ(t) = M(|ψξ(t)〉〈ψξ(t)|) = lim
N→∞

1

N

N
∑

ξ

|ψξ(t)〉〈ψξ(t)| (2)

In the current implementation quantum state diffusion (QSD)
method is used [5] that is based on the stochastic equation
for the state |ψξ(t)〉 that involves both Hamiltonian and the
Lindblad operators. We calculate the density operator using
an expansion of the state vector |ψξ〉 in a truncated basis
of Fock’s number states of a harmonic oscillator (photonic
states)

|ψξ(t)〉 =
∑

n

aξ
n(t)|n〉. (3)

The library corresponding to QSD method has been used to
investigate quantum dissipative chaos [6], stochastic reso-
nance [7], quantum-to-classical transition [8], and long-lived
quantum interference [9]. Electromagnetic field states are
well described in phase space, because due to the Heinsen-
berg uncertainty principle it is impossible to have a point in
phase space. Such description is usually done within frame-
work of the quasidistributions that are measurable physi-
cal quantities which are fully calculated via density matrix.
There is a number of quasidistributions that describe system
in phase space [10]. We provide calculations of the Wigner
(Eq. 4),that can be measure through the tomography mea-

1

surement and Husimi (Eq. 5) function

W (α) =
2

π2
e−2|α|2

∫

d2β〈−β|ρ|β〉e−2(βα∗−β∗α). (4)

Q(α) =
1

π
〈α|ρ|α〉 (5)

In these formulas α, β are coherent states, while ρ describes
density matrix. Husimi function is the density matrix mean
in coherent state, while Wigner function is the Fourier trans-
formation of density matrix. These distributions have a wide
application in quantum physics. We have chosen Wigner
function for detailed calculations that has negative values
for pure quantum states and it lets to obtain probability
distribution for one of the conjugate variables. Note, that
the tomography measurement lets to reconstruct state from
Wigner function. The package also has mechanisms for cal-
culation of the fidelity that is closeness of two quantum den-
sity operators. It was first introduced in [11] and now is
widely used in quantum optics for investigation of quantum
entanglement, quantum interference, quantum chaos and in
area of quantum information theory [12], [13], [14], [15]. The
expression that defines fidelity is:

F (ρ, σ) = (Tr(
√√

ρσ
√
ρ))2 (6)

where ρ and σ are density matrixes. The other quantity of
interest in this paper is the Poincaré section. It is usually
used to investigate periodic/quasi-periodic dynamical sys-
tems that exhibit a periodic cycle or chaotic attractor and
hence chaotic behavior. In more details the calculations of
these quantities will be presented in the next sections.

2. PROGRAM ARCHITECTURE
The Library software package for development of photonic
technologies is designed according to the object oriented pro-
gramming (OOP) paradigms. Its design keeps abstraction
and multiple code usage. The basic idea of the framework is
to allow users to build arbitrarily complex interacting quan-
tum systems from elementary free subsystems and interac-
tions between them , and simulate their time-evolution with
a number of available time-evolution drivers. The package
has three main internal layers: engine, mediator objects and
graphical user interface (GUI) (see Fig (1)). Each of engines
is independent from the others and can be run separately.

Figure 1: The program architecture diagram.

2.1 Quantum State Diffusion layer architec-
ture

In this layer, are solved some problems of quantum optics
like: density matrix calculation, calculations for the mean-
value different boson operators of the quantum system which

is described by any type of Hamiltonian. The current im-
plementation of the layer keeps the basic ideas of library
from [1]. Core is written in C++ software language and the
high priority Boost library is used, which works well with
C++. The engine core layer is a set of template classes rep-
resenting Hermitian space objects [1]. State vector, different
operator implementations (like a photon creation and anni-
hilation, Linbland, etc), density matrix, and etc. are going
to be the abstraction items. This layer also includes some
numerical simulation algorithms, based on named objects,
on of such algorithms in QSD method (Eq. (2)). In this
version the incorrect input handling is done compile time
using meta-programming concepts. The program will not
run with wrong values time resources will be saved. The
one of the modified parts of this layer is the output parsing
process. We modified the previous version of this package
mainly the parsing process to decrease simulation time. The
parameters values of the Hamiltonian and output quantities
are parsed for the first QSD trajectory simulation and are
cached in memory. We reached this result by creating an
abstract interface for data probing (measurement). An im-
portant part of this layer that the user can get results run
time. For example, we below illustrate the situation for an
open quantum system. One of the system of interest is the
nondegenerate optical parametric oscillator (NOPO) with
quarter plate inside the cavity recently proposed as an ef-
fective source of continuous variable entangled light beams
with localized phases. The interaction Hamiltonian of this
system reads as follows

H =

3
∑

i=1

h̄4a+
i ai + ıh̄E(t)

(

a+
3 − a3

)

+ıh̄k
(

a3a
+
1 a

+
2 − a+

3 a1a2

)

+ h̄χ(t)
(

a+
1 a2 + a1a

+
2

)

, (7)

where ai are the boson operators for the cavity modes ωi.
The mode a3 at frequency ω is driven by an external field
with time modulated amplitude E(t), while a1 and a2 de-
scribe subharmonics of two orthogonal polarizations at de-
generate frequencies ω/2 generated in the process ω → ω/2+
ω/2. The k determines the efficiency of the down-conversion
process, while χ(t) describes the energy exchange between
the subharmonics 4i and the cavity damping rates γi. In
this layer it is possible to get numerically the density matrix
and the photon excitation number for each of modes for this
kind of systems.

2.2 Calculation of quasidistributions
This is purposed for calculation of quasidistributions (Wigner,
Husimi) and tomography measurement for a given density
matrix (Eqs (4) and (5)). The input file format can be spec-
ified by user from GUI. If the user requires more than one
quasidistributions the simulation can run on different nodes,
parallel and they will not be any synchronization problem
with I/O streams as the density matrix is read from file at
first and then simulation starts. The parameters needed for
calculation of quasidistributions are: number of points in
phase space, basis vector dimension, initial values in phase
space, tomography angle if tomography measurement is re-
quired.

2.3 Poincaré section generation
We construct Poincaré section for periodic on time systems
choosing x0 and y0 as an arbitrary initial phase-space point
of the system at the time t0. In this case, we define a
constant phase map in the (X,Y) plane by the sequence
of points (Xn, Yn) = (X(tn), Y (tn)) at tn = t0 + 2π

δ
n, for

n = 0, 1, 2, ..., where δ is the frequency of the system. This
means that for any t = tn the system is at one of the points

2

of the Poincaré section. The real and imagine parts of an-
nihilation operator are considered as phase space axis. In
general Poincaré section in quantum and classical limits are
different. Quantum Poincaré map is obtained from one QSD
trajectory. This method has been discussed in [16]. This is
part of QSD layer. The difference between ordinary oper-
ator mean value calculation is the time range control and
output format, the calculation time should be time of pe-
riod. In the current implementation for obtaining classical
Poincaré section Heinsenberg equation of annihilation op-
erator in semiclassical limit should be entered from GUI.
In future we plan to get Heinsenberg equation semiclassical
equation programmatically from the Hamiltonian.

2.4 Fidelity calculation
This engine also is object oriented. It has a library for pure
states that can be extended by user. To extend the pure
states library user should inherit from states::state class and
overload generate norm() and generate state in fock basis()
virtual functions. The only restriction in the current imple-
mentation is that the state should be represented in Fock
basis. By default the library contains generalized coherent
state, self-phase modulated (Kerr nonlinearity) state, co-
herent state in the presence of field, photon-phase squeezed
states. For the input file user can specify his/her special
format.

2.5 GUI and mediator object
The engines that simulate are separated from graphical user
interface. The connection between GUI and engines is es-
tablished by intermediate objects that holds data initialized
from GUI by user and exports a file (source file) which is
dynamically linked with the engines shared libraries for fur-
ther simulation. The intermediate object is implemented
to have one more level of abstraction and minimize GUI
and engines relation. Simulation engines are independent
from GUI and can work with other ones via objects::qsd,
objects::quasidistribution, objects::fidelity objects. In the
current implementation the GUI is realized by Qt 4.2 library.
In GUI programming design generic programming concepts
are not kept to have a richer interface. The connection be-
tween GUI and QSD engine is provided by objects::qsd that
holds the Hamiltonian, number of modes, initial state, sys-
tem parameters, evaluation time, vector dimension, number
of trajectories to be run, number of processors on which
program should run, the names of output files. The inter-
mediate object purposed for quasidistributions holds user
specified input file name, output files names, the quasidis-
tribution type, initial state in phase space, the basis vec-
tors dimension, number of points in phase space for keeping
quasidistribution and tomography angle in the case of to-
mography measurement specification. By default the input
file format is the same as generates QSD engine for den-
sity matrix, but the user can write his/her own from GUI.
In this case user should be familiar with C++ I/O stream
programming. The simulation success will depend on it.

3. PARALLELIZATION
Numerical simulations for system which have more than one
dimension (number of freedom) may take long time. For this
type of systems a state vector contains about 50000 complex
numbers which is about of each trajectory for QSD takes
minutes. And since at least 1000-5000 trajectories are re-
quired to get smooth results a full simulations takes days.
To reduce execution time current version of program is de-
veloped which runs on cluster, and uses advantages of par-
allel programming. There are few ways to share the source
code for parallel calculation. The QSD algorithm simulates

the same equation many times with the same initial state
and exactly same parameters. We choose one of them which
have simple character and is effective as the maximum size
of nodes (processors) is not limited. By using this shar-
ing approach we avoid some problems like synchronization
and time delay in massage passing process in interproces-
sors communication. The parallelism is realized by MPI
(The Massage Passing Interface) library which work well
with C++. For QSD layer in GUI part we give also the
number of nodes N . After parsing program starts by calling
run() function which is written in the exported main.cpp
file. As parameter run() function takes also the number of
trajectories (nt = 5000) and number of nodes

MPI Init(&argc , & argv) ;
MPI Comm rank (MPI COMMWORLD, &myid) ;

for (int i = 0 ; i < N; ++ i)
{

i f (i == myid)
x . run (tr , dt , nt , i) ;

}
}
MPI Fina l i ze () ;

TheMPI Comm rank() function return the number of rank
which get run() function like a parameter. While working in
parallel mode equal number of trajectories is being simulated
on different nodes (1-N) of the cluster. After simulation re-
sults from different processes are merged. In this way run-
time of the simulation can be reduced by about many times,
which explicitly depends on number of available nodes in the
cluster.

4. USAGE
The application starts from ordinary main window. It con-
tains menu bar, toolbar, status bar and project tree view.
For starting simulation user should create a new project or
open existing one using File->New Project or File->Open
menu items. The File and Edit menu items are standard.
The Run menu contains Run QSD, Run Quasidistribution,
Run Poincaré, Run Fidelity items. Simulation menu con-
tains the following items: Simulation error due to step,
Simulation error due to trajectory count, Running trajec-
tory number. The new project command will open a di-
alog shown in Fig. 2(a). It has four template for creating
project. User should enter project name, and select any type
for the project. By default the project is created in the cur-
rent directory. If the user specifies ”Simulate QSD” project
then opened dialog shown in Fig. 2(b). In this tab user
specifies parameters like number of simulation trajectories
2000, vector dimension size 500, the count of processors 8
for parallelization, time interval from 0 to 100, integration
step 10−6. To set physical system configurations user should
change to the next tab ”Physical System parameters” that
is depicted in Fig. 2(c). In this tab user sets system Hamil-
tonian (Eq. 7), parameters (E(t), k, χ((t)), specifies number
of modes (ai) in according GUI items. The parameters and
operators added by user are displayed in list view to remind
user about already added parameters. User cannot add pa-
rameters and creation/anihillation operators with the same
names. To probe the simulation result user should also add
files in this step. The type and name specification of pa-
rameter(operator) are required. Also user can add descrip-
tion to parameter that will be displayed as a tooltip in list
view. During simulation user can require the error caused
by integration step, simulation trajectories count. The error
due to integration step corresponds to second-order Runge-
Kutta integration algorithm error as the deterministic part
of QSD equation is integrated by this algorithm.

3

5. ACKNOWLEDGEMENT
This paper is prepared in the framework of the ISTC projects:
grants A-1451 and A-1606. We would like to acknowledge
the developers of Boost, Qt, openMP.

REFERENCES
[1] H. H. Adamyan, N. H. Adamyan, N. T. Gevorgyan, T.

V. Gevorgyan, and G. Yu. Kryuchkyan, ”Software for
numerical simulations in the field of quantum
technologies based on parallel programming”, Physics of

Particles and Nuclei Letters, 161-163, 2008.

[2] R. Schack, T. A. Brunn, A C++ library using quantum
trajectories to solve quantum master equations, Comp.
Phys. Commun. 102, 210-228, 1997

[3] S. M. Tan, A computational toolbox for quantum and
atomic optics, J. Opt. B, 1, 424, (1999)

[4] A. Vukics, C++ QEDv2, arXiv:0904.4172 quant-ph
(2009)

[5] N. Gisin and I. C. Percival, J. Phys. A 25, 5677 (1992);
26, 2233 (1993); 26, 2245 (1993); I. C. Percival,
Quantum State Diffusion(Cambridge Unoversity Press,
Campridge, (2000)

[6] H. H. Adamyan, S. B. Manvelyan, and G. Yu.
Kryuchkyan Phys. Rev. E64, 046219 (2001)

[7] H. H. Adamyan, S. B. Manvelyan, and G. Yu.
Kryuchkyan Phys. Rev. A63, 022102 (2001)

[8] G. Yu. Kryuchkyan and S. B. Manvelyan, Phys. Rev.
Lett. 88, 094101 (2002); Phys. Rev. A68, 013823 (2003)

[9] T. V. Gevorgyan, A. R. Shahinyan, G. Yu.
Kryuchkyan, Phys. Rev. A 79 094101 (2009)

[10] W. P. Schleich, Quantum Optics in Phase Space,
Wiley-VCH, (2001)

[11] R. Jozsa Fidelity for Mixed Quantum States. IN J.
Mod. Opt. 41.23152324, 1994.

[12] H. F. Hofmann, T. Ide, and T. Kobayashi, Phys. Rev.
A 62, 062304 (2000)

[13] G. Benenti and G. Casati, Phys. Rev. E 65, 066205
(2002)

[14] J. Emerson, Y. S. Weinstein, S. Lloyd, and D. G.
Cory, Phys. Rev. Lett. 89, 284102 (2002)

[15] H. Barnum, Ch. A. Fuchs, R. Jozsa, and B.
Schumacher, arxiv:quant-ph/9603014v1, 1996.

[16] A. Kapulkin, A. K. Pattanayak, Phys. Rev. Lett. 101,
074101 (2008)

Figure 2: The dialogs to create new project. (a) New project
dialog; (b) New QSD project dialog QSD parameters con-
figuration dialog; (c) New QSD project physical system con-
figuration dialog.

4

