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Göteborg University, Department of Chemistry, SE-412 96, Göteborg, Sweden
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The objective of present investigation to prove the possibility of representation the 3D interac-
tion between particles in various reacting three-body systems by analytical function with a set of
adjusting parameters in natural collision coordinates. Realization of this idea imply the procedure
of fitting of 3D numerical data by 3D analytical function or more precisely, calculation of adjusting
parameters in mentioned analytical function. In the work is used Levenberg-Marquardt algorithm
on the basis of which the numerical method is developed. The possibility of implementation of 3D

fitting with the big accuracy, on the example of reaction H + H2 is shown.

PACS numbers:

I. FORMULATION OF THE PROBLEM

Recently as was shown by authors [1] the three-body
quantum reactive scattering problem in the curvilin-
ear Natural Collision Coordinates (NCC ) system may
be reduced to the inelastic single-arrangement problem.
Mathematically the problem consists of solution of first-
order ordinary differential equation’s system. For numer-
ical investigations of this system it is necessary to define
full interaction potential between particles in the NCC

system (u, v, θ). Here u is a coordinate along the curve of
coordinate of reaction ℑif , which connects together (in)
and (out) scattering asymptotic subspaces, v is a normal
to the curve ℑif coordinate, along which the full wave-
function is localized, θ is a scattering angle. Recall that
usually the reaction potential is constructed by means of
ab−initio quantum calculations, after which this numeri-
cal data are used for fitting and reconstructing of the ana-
lytical form of interaction potential in terms of scaled Ja-
cobi coordinates (q0, q1, θ). Now the 3D analytical forms
are well known for many reaction potentials V (q0, q1, θ).
For definition of reaction potential in the NCC system,
the coordinate transformations (q0, q1, θ) → (u, v, θ) in
the expression of potential V (q0, q1, θ) are carried out.
We can organize the one-to-one mapping between coor-
dinate systems (q0, q1, θ) ⇔ (u, v, θ) in some subspace of
intrinsic 3D configuration down form the curve ℑif . Fol-
lowing the work [2], we can define the curve ℑif , which
connects (in) and (out) asymptotic channels in plane
(q0, q1):

qc
0 =

a

(qc
1 − q−eq)

+ bqc
1 + q+

eq, q−eq < qc
1 < +∞, (1)
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where a and b are some constants. In eq. (1) q−eq and q+
eq

are the mass-scaled equilibrium bond length of molecules
in (in) and (out) channels correspondingly. Note that the
variable qc

1 is defined on a part of axis q̄1 ∈ (q−eq , +∞) and
can have only positive values.

Now we can write the inverse transformations from
(q0, q1) to (u, v):

q0(u, v) = qc
0(u) − v sin φ(u),

q1(u, v) = qc
1(u) + v cosφ(u), (2)

where the angle φ(u) is determined from the requirement
that the coordinate system (u, v) should be orthogonal:
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dqc
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ℑij

= cotφ(u), lim
u→+∞

cotφ(u) =
{mAmC

mBM

}1/2

,

(3)
where mA, mB and mC are masses of scattering particles,
M is its sum.

The coordinate u describes the translational motion of
three-body system between reactant and product chan-
nels and is changed along the curve ℑif measured from
an initial point u0. It in particularly can be determined
by equation:

u = u0 −
a

(qc
1 − q−eq)

+ b(qc
1 − q−eq

)

. (4)

Under the numerical modelling of the system of differen-
tial equations near the subspace borders a computation
error appears. This problem we can solve by fitting a nu-
merical data in the NCC system. In the limits of NCC

system, the full interaction potential may be represented
in the following kind:

V (q0, q1, θ) ≡ U(u, v, θ)
.
=

m
∑

j

Uj(u, v)Pj(cos θ), (5)



where Pj(x) is Legendre polynomial and m < +∞. Tak-
ing into account the orthogonal property of Legendre

polynomials
∫ +1

−1 Pj(x)Pj′ (x)dx = 2
2j+1δjj′ we can find:

The full interaction potential between particles may be
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Uj(u, v)Pj(cos θ), (6)
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Uj = (j + 1/2)

∫ π

0

U(u, v, θ)Pj(cos θ) sin θdθ, (7)

It is obvious that if the V (q0, q1, θ) are known in the kind
of an analytical function or are specified in the form of
an numerical array, we can generate 2D numerical ar-
rays (databases) and look for its analytical approxima-
tion. Based on our experience, it is convenient to present
these functions in form:

Uj(u, v) =
(

2
∑

k=0

A
(k)
j (u)vk

)

e−2αj(u)v
− Bj(u)e−βj(u)v,

(8)

where the functions A
(k)
j (u) and Bj(u) provide smooth

transition from the bound state (AC) in the (in) chan-
nel to the bound state (AB) in the (out) channel, A,
B and C describe the reacting particles. Analyzing the
geometrical and topological features of the different en-
ergetic surfaces of reactions shows that we can use the
following analytical form for these functions:

Fj(u) = F
(0)
j +

F
(1)
j − F

(0)
j

1 + e−2γju
+

F
(2)
j γ2

j

(eγju + e−γju)2
, (9)

where F
(0)
j , F

(1)
j , F

(2)
j , and γj are some adjusting param-

eters and Fj(u) = (Ak
j (u), Bj(u), αj(u), βj(u)).

Thus now the main problem is the elaboration of nu-
merical method for computation of adjusting parameters
which would give its a possibility to carry out approxi-
mation of a numerical array with the given accuracy.

II. CHI -SQUARE FITTING METHOD

There are various methods for fixing adjusting param-
eters in expressions (7)-(8), the relaxation method, the
Newton method, and the modified Newton method [3, 4]
et etc. All the mentioned methods are based on the
procedure of inverse Jacobian matrix computation with
respect to the adjusting parameters. However the di-
rect calculation of the Hessian by means of minimization
methods is impossible. For a solution of considered prob-
lem in this paper we use nonlinear minimization method.

The minimization methods permit the iterative eval-
uation of a function and of its gradients. The second
essential difference from all previous methods is that all
the above methods are based on the linear search or linear
minimization. The methods in issue are based on nonlin-
ear procedures with the use of least-squares formalism.
The calculation procedure of the gradient and Hessian in
the Levenberg-Marquardt method is described in [5].

The j component of decomposition in the expression
of full 3D reaction potential (3) under the consideration
can be represented as:

Uj = Uj(u,v,C), (10)

where C is the vector of adjusting parameters having
the dimensions M . The mean-square deviation of the
function χ2 can be determined the following way:

χ2
j (u,v) =

N
∑

i=1

[

Uj(ui, vi) − Uj(ui, vi,C)

σi

]2

, (11)

(in literature method is called the ”chi-square”) σi-
described standard deviation.

The gradient of function χ2
j is:

∂χ2
j

∂Ck
= −2

N
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U i
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]

σ2
i
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∂Ck
, (12)

where U i
j ≡ Uj(ui, vi).

The second derivative is computed as follows:

∂2χ2
j

∂Ck∂Cl
= 2

N
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·
Uj(ui, vi,C)
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−
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. (13)

Here we introduce some designations:

αk =
1

2

∂χ2
j

∂Ck
, βkl =

1

2

∂2χ2
j

∂Ck∂Cl
, (14)

From (14) we obtain the relation:

αk =

M
∑

l=1

βklδCl, (15)

where Cl satisfy a system of linear equations:

δCl = constant · αl, (16)

The second partial derivatives are computed by formula:

βkl =
N

∑

i=1

1

σ2
i

[

∂U(ui, vi,C)

∂Ck

∂U(ui, vi,C)

∂Cl

]

. (17)

So, here all necessary formulas for closed computation
of adjusting parameters in 3D model potential (4)-(9)
are presented. The adjusting parameters in our previ-
ous article [6] which about a reaction surface of collinear
collision, have been computed using the Levenberg-
Marquardt’s nonlinear optimization method [5].



FIG. 1: Reaction surface of collinear collision H+H2 by using
quantum-chemical ab initio calculations.A ( u )

u
FIG. 2: The behavior of modified Echart function for a reac-
tion surface of collinear collision.

III. FITTING OF 3D REACTION SURFACE

H + H2 SYSTEM

The approximation of numerical data with an analyt-
ical surface is done by applying several numerical meth-
ods, mainly the Levenberg-Marquardt algorithm and
Fourier transformation. The first step in this process is
analysis of the numerical data and finding an analytical
function that visually matches the numerical data. In
the case of collinear surface fig. 1 the following scenario
has been followed. First, a pre-calculated numerical ar-
ray of reaction surface points is considered as a set of
data points over (u, v) plain. The surface is sliced over
the u axis and the graphs of slices are analyzed. In the
process of analyzing of slices it was pointed out, that
each slice can be approximated using the simple version
of generalized Mors potential (see (8)):

UGM (u, v) = A(u)
[

e−2α(u)[v−v0(u)
− 2e−α(u)[v−v0(u)

]

.

(18)

FIG. 3: The reaction surface of collinear collision H + H2

constructed by analytical formula (18) after fixing of adjusting
parameters.

For the fitting to be more accurate the following modifi-
cations on the numerical surface are applied. First, the
surface is analyzed to find the optimal value of △z shift
along the z axis (potential energy axis), for which z → 0
when v → −∞ for any value of u. After that, on each
slice, only negative values are considered for fitting (as
it was shown by a series of numerical experiments, this
gives the most accurate results). It’s also worth men-
tioning, that the points of our interest lye in the ”flute”,
and are localized near the ”peak” in fig. 2 (that is, ap-
proximately, in the range u ∈ [−7, +7]), that’s why the
numerical experiment aims to produce the best results
in that area. The result of fitting the slices produces a
2D numerical array, that contains values for parameters
A(u), and for each value of u. Further, these sets of points
are fitted (again using Levenberg-Marquardt algorithm)
to the following modified Echart function:

A(u) = a +
b − a

1 + eγ(u−u0)
+ de−α(u−u0)2

+
cγ2

(eγ(u−u0) − e−γ(u−u0)
)2 , (19)

where a, b, c, d, u0 and γ are some adjusting parame-
ters. Finding an approximated analytical representation
of Mors potential parameters gives us an analytical ap-
proximation of reaction surface. This analytical repre-
sentation of surface (fig. 3) gives a value of relative error
of not more than 5 percent, at maximum in the region
which important for a elementary atom-molecular pro-
cesses (fig. 4). The analysis of input data shows, that
some inaccuracy in it can lead to this error. Hence, fur-
ther reducing of relative error can be done by further re-
finement of input data in the first step. The non-collinear
problem requires finding an analytical representation of
(7) surface (using numerical values of that we already



FIG. 4: The relative error between figures 1 and 3.

have), which is later used in (5) formula. As the nu-

merical experience have proved, the values of m that are
bigger than 8 give a variance in potential values less than
1 percent, the potential surface for non-collinear reaction
can be calculated using above mentioned decomposition
by Legendre polynomials with high degree of accuracy
taking into account the first 8 Legendre polynomials.

For analytical approximation of numerically calculated
Uj surface, again, the surface is sliced along its u axis,
and the slices are first analyzed visually. During that pro-
cess, it was inspected, that some of the slices are ”well
behaved” while others follow an irregular pattern. For
being able to deal with these irregularities, it was decided
to approximate the slices using Fourier transformations.
The Fourier polynomial of degree 40 showed a good ap-
proximation in the surface area of our interest (the peak
and its surroundings).

IV. ACKNOWLEDGMENTS

This work was partially supported by ISTC-1451
project.

[1] A. S. Gevorkyan, G. G. Balint-Kurti, A.V. Bogdanov, G.
Nyman: Novel Algorithms for Quantum Simulation of 3D
Atom-Diatom Reactive Scattering. ICCSA, 3, 1114-1123
(2007).

[2] R. A. Marcus, J. Chem. Phys., 45, 4493 (1966); R. A.
Marcus, J. Chem. Phys., 49, 2610 (1968).

[3] Samarskiy A. A., Numerical methods, Moscow, Nauka
(1997).

[4] Bakhvalov N. S., Introduction to the numerical methods,

Moscow, Nauka (1987).
[5] William H., Numerical Recipes in C, Cambridge Univer-

sity Press (1992).
[6] A. S. Gevorkyan et al., Modeling of the potential energy

surface of regrouping reaction in collinear three-atom col-
lision system. Computational Science-ICCS 2003, Eds. A.
V. Bogdanov, P. Sloot et al, St-Petersburg, Russia, Jun
1-5, 2003, Proc., 1, 567-577, Springer- Verlage (2003).


