

High productive programming for cluster systems using ParJava environment

 Victor P. Ivannikov

Arutyun I. Avetisyan
Sergey S. Gaissaryan
Varvara V. Babkova,

Institute for System Programming RAS
Moscow, Russia

e-mail: ivan, arut, ssg, barbara@ispras.ru

ABSTRACT

This paper is devoted to presentation of ParJava
environment being developed in ISP RAS. It provides to
application programmer a set of tools supporting design of
parallel programs for high performance clusters using Java
extended by a standard MPI library.
ParJava allows to make the most part of development using
instrumental computer. It is possible because of using the
original model of a parallel Java program. The model is
designed in such a way that its interpretation allows to predict
program execution time (performance), or its other dynamic
attributes (profiles, traces, etc.) for given cluster. Accuracy of
prediction may be improved using special benchmarks to
obtain cluster’s parameters and measuring the execution time
of basic blocks using single node of the cluster. Using of the
interpreter in real applications development (a program of
tornado modeling and a program of modeling) demonstrated
that prediction error does not exceed 10%.
Use of an instrumental computer instead of the cluster
together with new generation language Java appreciably
increases the productivity of development.
In closing current research activities devoted to methods and
tools allowing to discover program parallelism, automatic
parallel code generation and automatic tuning of code to given
hardware are discussed.

Keywords
Parallel programming, scientific computations.

1. INTRODUCTION

Evolution of computer and network techniques
resulted in parallelism on all levels being the main property of
modern computing systems. The cluster systems (distributed
memory) with thousands of processors are widely used. Wide
production of general purpose multicore processors has
begun. Regardless of the fact that up-to-date multicore
processors have not more than 16 cores, produces already
seriously promise several hundreds and even thousands cores
[1]. Moreover, special-purpose processors, holding hundreds
of cores on a chip are already produced (graphical
accelerators produced by AMD and nVidia). High
performance, low power consumption and low cost of special-
purpose multicore (usually, these processors are oriented to
computer games) led to simulated the trend to use them not
only their direct destination. Efforts for wide application of
heterogeneous architectures including a general purpose
processor together with a set of special-purpose multicore
processors (accelerators) to solve general purpose computing
tasks. An accelerator has access to both – to its own storage
and to common storage of heterogeneous system as well. As
examples of such architectures we may consider IBM Cell

architecture, architectures using graphical accelerators
produced by AMD and nVidia, multicore graphical
accelerator Larrabee of Intel.

A nagging problem arose – to design parallel
programming languages to provide high productivity of
programmers developing parallel applications. However the
languages designed in the nineties (HPF [2], UPC [3] etc.) did
not solve the problem [4]. As the result programmers
performing the industrial design of parallel applications are
forced to use so called “assembly level” using a sequential
programming language (C/C++, Fortran), designed in 60-
70ies, and explicit calls to communication library MPI (for
systems with distributed memory), explicit OpenMP pragmas
(for systems with common memory), or using CUDA [5]
technology (CUDA is a superset of C for Nvidia accelerators).
Listed facilities exactly correspond to hardware architecture
allowing to develop efficient parallel programs, but expect the
high level of comprehension of hardware details.

Thus, the parallel programming presently needs
manual tuning of a programs (data distribution,
communication patterns, synchronization of access to critical
data, etc.). This leads to considerable resource spending and
needs high professional skill of application programmers. The
cost needed to achieve a good performance and needed degree
of scalability often is found too high. Therefore the goal of
modern research is the fundamental problem of high
productivity [6] of the development of parallel applications,
when a sufficient level of performance and scalability is
achieved spending acceptable level of development costs.
This is especially important as the parallel programming
becomes prevalent.

There are many directions of research: the properties
of various applications are studied, the efforts to classify
applications are made (including to discover some common
kernels), the properties of hardware are studied in order to
maximize their usage and evolution, the wide spectrum of
programming facilities is being researched and designed.

One of directions of research is design of the new
generation of parallel programming languages (X10 [7],
Chapel [8], Fortress [9], Cilk [10], Brook+ [11] and others).
In spite of these works are guided by the past experience they
did not yet bring to the success, first of all owing to
insufficient level of existing compiler technologies.

Both industrial and research systems supporting the
tuning process of programs developed on “assembly level”
are implemented. Presently several such systems are known:
DDT [12], and TotalView [13] debuggers, TAU [14] tuning
facility of Oregon University, etc.

ParJava environment [15], developed in ISP RAS, is
one of such facilities. ParJava provides to application
programmer a tool-kit supporting development of parallel
programs for computing systems with distributed memory

(high performance clusters) using Java language extended
with a standard message passing library (MPI).

Presently Java environment is of considerable interest
in the aspect of high performance computations. It is due to
positive properties of Java in aspect of application
programming (portability, debugging simplicity, etc.), and to
simplicity of development of various tools using Java
infrastructure as well. It is necessary to mention such systems
as ProActive Parallel Suite [16] (INRIA), MPJ Express [17]
(University of Reading and University of Southampton),
Distributed Parallel Programming Environment for Java
(IBM) etc. Furthermore, the support for Java + MPI has been
added to well-known parallel programs development system
for C/C++ and Fortran 77/90 TAU.

The following two tasks were studied in ParJava
Project: (1) to provide the efficient execution of parallel Java-
programs with explicit calls of MPI using high performance
cluster systems, and (2) to create a workflow of a parallel
program implementation providing the realization of the most
part of workflow using the instrumental computer.

In present paper the main features of ParJava
environment are described.

2. THE MODEL OF AN SPMD
PROGRAM IN THE PARJAVA
ENVIRONMENT.

Syntactically the model of an SPMD program is a set
of models of all its classes, the model of a class is a set of
models of all its methods together with the model of an
additional method describing the class fields, its static
variables, and their initialization. The model of a method
(function) consists of its symbol table and its control tree (in
the case of Java it is isomorphic to the abstract syntax tree of
the method: the internal nodes of the model correspond to
Java control statements, and the leaf nodes correspond to
basic blocks. We consider as basic block not only linear
sequences of computations (computational basic block) but
also calls of methods and functions, and calls of
communication functions. The model of a basic block is a
tuple containing the descriptor and the body of the basic block
(a sequence of expressions or function call). To enable
interpretation of a model by parts, the concept of a reduced
block is introduced: a reduced block by definition is a dummy
basic block with empty body, its descriptor provides the
values of dynamic attributes of a basic block or a region being
represented by the reduced block (region is defined as a part
of a program corresponding to control tree’s node).

Each MPI process of the SPMD program is
represented in its model by a logical process. A logical
process is defined as a sequence of actions (such as execution
of a basic block, execution of a data exchange operation, and
the like), each action being described by its duration. The
durations of computational basic block are measured on the
target platform in advance. Each logical process has a model
clock. The initial value of model clock of each process is zero.
Upon interpretation of each action, its duration is added to the
model clock of corresponding logical process.

To reduce the interpretation time and enable one to
perform the interpretation on the development computer, only
the control flows of the processes and data exchange
operations are modeled. This is possible because the
execution time (duration) and other dynamic attributes of
basic blocks are determined on the target system before the
interpretation is started. The interpretation only propagates
values of the dynamic attributes to other nodes of the model.
Such an approach makes it possible to remove the variables
whose values do not affect the control flow of the program
from the basic block models. As a result, the part of the

computations in which these variables are defined and used
becomes dead code and is also removed. As a result, the
amount of data to be processed and the total amount of
computations performed in the course of the interpretation is
reduced appreciably. The procedure just described can
sometimes eliminate all the code from some basic blocks;
such basic blocks are replaced by reduced blocks.

3. INTERPRETATION OF THE MODEL

The interpretation of an SPMD program model
executed on p nodes of a parallel computing system (cluster)
is performed in p logical processes each of which is executed
in an individual thread. The interpretation consists in
computation of control statements to determine a basic block
which must be executed next and processing of chosen basic
block. After the basic block is chosen the following actions
are performed depending on its type:

• For a computational block (the duration d of such
blocks is determined in advance on the target
platform), the duration d is added to model clock of
corresponding logical process, and the control is
returned to the interpreter.

• For a reduced block (the duration d and other
dynamic attributes of such blocks are determined
before it is reduced), the duration d is added to
model clock of corresponding logical process, and
the control is returned to the interpreter.

• For a block representing a communication function
call, the control is returned to the interpreter, where
the model of corresponding communication
function is executed. In addition to transferring
data between logical processes, the model
estimates the communication execution time
(duration) and adds estimated duration to model
clock of corresponding logical process.

• For a block representing a user function call, the
control is returned to the interpreter, where the
model of the function (method) is executed. In the
course of the computation model execution, the
current state is saved in a stack and the required
data structures are loaded. After the interpretation
of the model of the function is completed, the state
that existed at the moment of calling the function is
popped from the stack, and interpretation of the
caller function’s model is continued.

4.REDUCTION AND INTERPRETATION
BY PARTS

There is a reduction operation defined on the elements
of the method’s model. The reduction of a basic block is the
replacement of this block with a reduced block having an
empty body and a fixed value of the dynamic attributes. The
reduction of an internal node representing a Java statement
consists in the depth-first traversal of the corresponding
subtree with the sequential reduction of all its descendants
beginning with the basic blocks. A necessary condition for a
node reducibility is its closeness with respect to control (in the
subtree rooted at this node, no values of the control variables
used in other parts of the program are evaluated) and its
closeness with respect to communications (if the subtree
rooted at this node contains a call of a message send (receive)
function, the corresponding call of the message receive (send)
function must also be contained in the same subtree.

The verification of the closeness property with respect
to communications is reduced to finding the pair for each
receive (send) operation, i.e., to finding the pairs send–recv.
Some such pairs can be found using the static analysis in the

course of the model generation; the information about the
detected pairs is saved in the model. However, not all the
pairs can be found using the static analysis. The remaining
pairs are found by dynamic analysis in the course of the
model interpretation. The pairs are found using the system
predicate Match, which checks if the parameters of the
functions send and recv (communicators, tags, and process
identifiers) match each other. If a node does not meet the
reducibility conditions, one can use the Model Analyzer tool
included in ParJava to find the minimal subtree containing
this node and satisfying the reducibility conditions.

5. PARJAVA ENVIRONMENT

The interpreter of the model of SPMD program is one
of the tools of ParJava environment supporting the process of
development of SPMD Java-programs using mainly a source
computer. The information about dynamic attributes of an
SPMD program obtained using ParJava interpreter allows to
estimate its scalability domain walls, and helps application
programmer to improve manually his program checking the
improvements made by the interpreter.

ParJava environment is integrated with Eclipse [18],
the open source Java program development environment, thus
forming the unified SPMD-program development
environment including both ParJava tools and Eclipse tools
(text editor, project build subsystem, incremental compilation
facility, etc.).

The first problem which had to be solved during
implementation of ParJava was effective implementation of
standard MPI library for Java. Several implementations of
Java MPI [19, 20] available through Internet do not provide
effective data communications and miss some MPI functions.
Therefore a new version of MPI for Java environment
(mpiJava library) was implemented. The current version of
mpiJava supports all functions of MPI-1.1 standard and
parallel input/output of MPI-2 standard as well. mpiJava
library is implemented using JNI binding techniques by
analogy with C++ binding described in MPI-2 standard.

Besides the model builder and its interpreter ParJava
provides several tools (such as Loop Analyzer, Model
Explorer, Model Editor, etc.) facilitating development and
tuning of SPMD Java-programs. ParJava interpreter allows to
obtain estimations of speed-up of a program which are precise
enough; the error does not exceed 10% on real applications
and is estimated as 5% on average. The final values of
parameters of the SPMD program can be improved using the
target cluster.

6. EXAMPLES AND NUMERICAL
RESULTS

Admissibility of practical application of ParJava
environment was tested using several sample SPMD programs
and one real SPMD program. Here some examples are
presented.

The first sample program is very simple. It provides
the solution of the system of 10,000 linear algebraic equations
by means of Jacoby iteration algorithm (Jacoby sample
program). As it is seen on Fig. 1 shows the values of speed up
obtained using interpreter (broken curve) are close to those
obtained during real execution of the program (firm curve).

The second sample program provides the solution of
linear heat conduction equation in rectangular region (Heat
conduction sample program). The results are presented in
Table 1 (the relative error of estimation did not exceed 0.7%).
In this example the number of matrix elements is increased
together with number of MPI processes in such a way that

amount of data in each process remains practically unchanged
(J. Gustafson’s scaled-size scalability model [21]).

Understanding that sample programs, being very

simple and taking too little time for execution, do not let to
appreciate the advantages of ParJava, we added the third
example.

Fig. 1. Estimated and real speed up for Jacoby sample program

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70 80

number of MPI processes

sp
ee

d
up

estimated real

The example presents a real scalable parallel program
calculating numerical solution of non-linear system of partial
differential equations, modeling the processes and origin
conditions of intensive atmospheric vortices in 3D
compressible atmosphere according to the theory of
mesovortice turbulence by V. Nikolaevskiy. The program was
developed in the Institute for System Programming RAS in
collaboration with the Institute of Physics of the Earth RAS
using ParJava environment and is intended to be executed
using high-performance clusters. The system of equations was

Fig. 2. Comparison of modeled and real program speed-up for blocking
and non-blocking communications.

0

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

64

68

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68
number of MPI processes

sp
ee

d-
up

Blocking communications (real) Nonblocking (real)
Nonblocking (model) Amdahl curve

obtained in [22, 23] and is a strongly non-linear system of the
mixed type.

The test computations held at the ISP RAS cluster (16
nodes, 4 processor per node, Intel® Xeon® CPU X5355 @
2.66GHz Myrinet Express 2000).

Program has been modeled by interpreter. The
interpretation was carried in several sessions and included
partial interpretation of the main loop and some of methods.
Each session did not take time more than three hours. The
execution time of the program is about 30 hours (it was
divided into two intervals using control point mechanism
implemented in ParJava environment). The results are
presented on Fig.2. Comparison of real and model speed up
curves shows that modeling is precise enough: the error did
not exceed 5% in average.

Also from Fig 2 is seen, that replacement of blocking
MPI communication functions (send, resv) by non-blocking
ones (isend, iresv) significantly improves program’s speed-up.

7.DETAILS
7.1. Contact adress
Institute for System Programming of the Russian Academy of
Sciences,
25, B.Kommunisticheskaya st., Moscow, 109004, Russia
E-mail: arut@ispras.ru
Phone: +(7-495) 912-07-54
Fax: +(7-495) 912-15-24

8. ACKNOWLEDGEMENT
The authors are grateful to V.N. Nikolaevsky, V.A.Padaryan
and S.A. Arsenyev for useful critics, discussions and support.

REFERENCES
[1]. David A. Patterson et al. The Parallel Computing

Laboratory at U.C. Berkeley: A Research Agenda Based
on the Berkeley View. Technical Report No.
UCB/EECS-2008-23
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EEC
S-2008-23.html. March 21, 2008.

[2]. High Performance Fortran Language Specification,
Version 2,0.//High Performance Fortran Forum January
31,1997 http://www.netlib.org/hpf/index.html

[3]. W. Chen, C. Iancu, K. Yelick. Communication
Optimizations for Fine-grained UPC Applications. //14th
International Conference on Parallel Architectures and
Compilation Techniques (PACT), 2005.

[4]. K. Kennedy, C. Koelbel, H. Zima. The Rise and Fall of
High Performance Fortran: An Historical Object Lesson
// HOPL III: Proceedings of the third ACM SIGPLAN
conference on History of programming,2007, San Diego,
California, June 09 - 10, 2007, pp. 7-1 – 7-22

[5]. CUDA, Parallel Programming Environment for GPU.
http://www.nvidia.com/object/cuda_home.html (In
Russian)

[6]. The DARPA High Productivity Computing Systems.
http://www.highproductivity.org/

[7]. K. Ebcioglu, V. Saraswat, V. Sarkar. X10: an
Experimental Language for High Productivity
Programming of Scalable Systems // Proceedings of the
Second Workshop on Productivity and Performance in
High-End Computing (PPHEC-05) Feb 13, 2005, San
Francisco, USA pp. 45-52

[8]. B.L. Chamberlain, D. Callahan, H.P. Zima. Parallel
Programmability and the Chapel Language //

International Journal of High Performance Computing
Applications, August 2007, 21(3): 291-312.

[9]. E. Allen, D. Chase, J. Hallett et al The Fortress
Language Specification (Version 1.0) / cSun
Microsystems, Inc., March 31, 2008 (262 pages)

[10]. Cilk++ Solution Overview.
http://www.cilk.com/multicore-products/cilk-solution-
overview/

[11]. Brook+ Streaming Compiler.
http://ati.amd.com/technology/streamcomputing/sdkdwnl
d.html

[12]. Parallel Debugger: DDT.
http://www.nottingham.ac.uk/hpc/html/docs/numerical/p
arallel_ddt.php

[13]. TotalView. http://www.totalviewtech.com/
[14]. Sameer S. Shende, Allen D. Malony. The TAU Parallel

Performance System // The International Journal of High
Performance Computing Applications,Volume 20, No. 2,
Summer 2006, pp. 287–311

[15]. V.P.Ivannikov, A.I.Avetisyan, S.S.Gaissaryan,
V.A.Padaryan. Parallel Program Dinamic Characteristic
Evaluation Using Models. // Programming and Computer
Software, 2006, №4 pp. 21–37

[16]. Brian Amedro, Vladimir Bodnartchouk, Denis Caromel,
Christian Delbé, Fabrice Huet, Guillermo L. Taboada.
Current State of Java for HPC. Technical report N° 0353.
August 2008.

[17]. Mark Baker, Bryan Carpenter, and Aamir Shafi. MPJ
Express: Towards Thread Safe Java HPC, Submitted to
the IEEE International Conference on Cluster Computing
(Cluster 2006), Barcelona, Spain, 25-28 September,
2006.

[18]. http://www.eclipse.org/
[19]. mpiJava Home Page//

http://aspen.ucs.indiana.edu/pss/HPJava/mpiJava.html
[20]. Mark Baker, Bryan Carpenter, Geoffrey Fox , Sung

Hoon Ko, and Xinying Li. mpiJava: A Java MPI
Interface// http://acet.rdg.ac.uk/~mab/Papers/EuroPar-
98/, 1998

[21]. J.L. Gustafson, Reevaluating Amdahl’s Law//
Communications of the ACM, 1988, Vol. 31, No 5.

[22]. Nikolaevskiy V.N. Angular Momentum in Geophysical
Turbulence: Continuum. Spatial Averaging Method.
Dordrecht: Kluwer (Springer). (2003) 245

[23]. Arsenyev S.A., Gubar A.Yu., Nikolaevskiy V.N. Self-
Organization of Tornado and Hurricanes in Atmospheric
Currents with Meso-Scale Eddies. // Doclady Earh
Science. Vol.396. N.4. (2004) 588-593

http://www.nvidia.com/object/cuda_home.html

	6. EXAMPLES AND NUMERICAL RESULTS

