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ABSTRACT 

This paper is devoted to presentation of ParJava 
environment being developed in ISP RAS. It provides to 
application programmer a set of tools supporting design of 
parallel programs for high performance clusters using Java 
extended by a standard MPI library.  
ParJava allows to make the most part of development using 
instrumental computer. It is possible because of using the 
original model of a parallel Java program. The model is 
designed in such a way that its interpretation allows to predict 
program execution time (performance), or its other dynamic 
attributes (profiles, traces, etc.) for given cluster. Accuracy of 
prediction may be improved using special benchmarks to 
obtain cluster’s parameters and measuring the execution time 
of basic blocks using single node of the cluster. Using of the 
interpreter in real applications development (a program of 
tornado modeling and a program of modeling) demonstrated 
that prediction error does not exceed 10%.  
Use of an instrumental computer instead of the cluster 
together with new generation language Java appreciably 
increases the productivity of development.  
In closing current research activities devoted to methods and 
tools allowing to discover program parallelism, automatic 
parallel code generation and automatic tuning of code to given 
hardware are discussed. 
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1. INTRODUCTION 

Evolution of computer and network techniques 
resulted in parallelism on all levels being the main property of 
modern computing systems. The cluster systems (distributed 
memory) with thousands of processors are widely used. Wide 
production of general purpose multicore processors has 
begun. Regardless of the fact that up-to-date multicore 
processors have not more than 16 cores, produces already 
seriously promise several hundreds and even thousands cores 
[1]. Moreover, special-purpose processors, holding hundreds 
of cores on a chip are already produced (graphical 
accelerators produced by AMD and nVidia). High 
performance, low power consumption and low cost of special-
purpose multicore (usually, these processors are oriented to 
computer games) led to simulated the trend to use them not 
only their direct destination. Efforts for wide application of 
heterogeneous architectures including a general purpose 
processor together with a set of special-purpose multicore 
processors (accelerators) to solve general purpose computing 
tasks. An accelerator has access to both – to its own storage 
and to common storage of heterogeneous system as well. As 
examples of such architectures we may consider IBM Cell 

architecture, architectures using graphical accelerators 
produced by AMD and nVidia, multicore graphical 
accelerator Larrabee of Intel. 

A nagging problem arose – to design parallel 
programming languages to provide high productivity of 
programmers developing parallel applications. However the 
languages designed in the nineties (HPF [2], UPC [3] etc.) did 
not solve the problem [4]. As the result programmers 
performing the industrial design of parallel applications are 
forced to use so called “assembly level” using a sequential 
programming language (C/C++, Fortran), designed in 60-
70ies, and explicit calls to communication library MPI (for 
systems with distributed memory), explicit OpenMP pragmas 
(for systems with common memory), or using CUDA [5] 
technology (CUDA is a superset of C for Nvidia accelerators). 
Listed facilities exactly correspond to hardware architecture 
allowing to develop efficient parallel programs, but expect the 
high level of comprehension of hardware details.  

Thus, the parallel programming presently needs 
manual tuning of a programs (data distribution, 
communication patterns, synchronization of access to critical 
data, etc.). This leads to considerable resource spending and 
needs high professional skill of application programmers. The 
cost needed to achieve a good performance and needed degree 
of scalability often is found too high. Therefore the goal of 
modern research is the fundamental problem of high 
productivity [6] of the development of parallel applications, 
when a sufficient level of performance and scalability is 
achieved spending acceptable level of development costs. 
This is especially important as the parallel programming 
becomes prevalent.  

There are many directions of research: the properties 
of various applications are studied, the efforts to classify 
applications are made (including to discover some common 
kernels), the properties of hardware are studied in order to 
maximize their usage and evolution, the wide spectrum of 
programming facilities is being researched and designed.  

One of directions of research is design of the new 
generation of parallel programming languages (X10 [7], 
Chapel [8], Fortress [9], Cilk [10], Brook+ [11] and others). 
In spite of these works are guided by the past experience they 
did not yet bring to the success, first of all owing to 
insufficient level of existing compiler technologies.  

Both industrial and research systems supporting the 
tuning process of programs developed on “assembly level” 
are implemented. Presently several such systems are known: 
DDT [12], and TotalView [13] debuggers, TAU [14] tuning 
facility of Oregon University, etc.  

ParJava environment [15], developed in ISP RAS, is 
one of such facilities. ParJava provides to application 
programmer a tool-kit supporting development of parallel 
programs for computing systems with distributed memory 



(high performance clusters) using Java language extended 
with a standard message passing library (MPI).  

Presently Java environment is of considerable interest 
in the aspect of high performance computations. It is due to 
positive properties of Java in aspect of application 
programming (portability, debugging simplicity, etc.), and to 
simplicity of development of various tools using Java 
infrastructure as well. It is necessary to mention such systems 
as ProActive Parallel Suite [16] (INRIA), MPJ Express [17] 
(University of Reading and University of Southampton), 
Distributed Parallel Programming Environment for Java 
(IBM) etc. Furthermore, the support for Java + MPI has been 
added to well-known parallel programs development system 
for C/C++ and Fortran 77/90 TAU.  

The following two tasks were studied in ParJava 
Project: (1) to provide the efficient execution of parallel Java-
programs with explicit calls of MPI using high performance 
cluster systems, and (2) to create a workflow of a parallel 
program implementation providing the realization of the most 
part of workflow using the instrumental computer.  

In present paper the main features of ParJava 
environment are described. 
 
2. THE MODEL OF AN SPMD 
PROGRAM IN THE PARJAVA 
ENVIRONMENT. 

Syntactically the model of an SPMD program is a set 
of models of all its classes, the model of a class is a set of 
models of all its methods together with the model of an 
additional method describing the class fields, its static 
variables, and their initialization. The model of a method 
(function) consists of its symbol table and its control tree (in 
the case of Java it is isomorphic to the abstract syntax tree of 
the method: the internal nodes of the model correspond to 
Java control statements, and the leaf nodes correspond to 
basic blocks. We consider as basic block not only linear 
sequences of computations (computational basic block) but 
also calls of methods and functions, and calls of 
communication functions. The model of a basic block is a 
tuple containing the descriptor and the body of the basic block 
(a sequence of expressions or function call). To enable 
interpretation of a model by parts, the concept of a reduced 
block is introduced: a reduced block by definition is a dummy 
basic block with empty body, its descriptor provides the 
values of dynamic attributes of a basic block or a region being 
represented by the reduced block (region is defined as a part 
of a program corresponding to control tree’s node).  

Each MPI process of the SPMD program is 
represented in its model by a logical process. A logical 
process is defined as a sequence of actions (such as execution 
of a basic block, execution of a data exchange operation, and 
the like), each action being described by its duration. The 
durations of computational basic block are measured on the 
target platform in advance. Each logical process has a model 
clock. The initial value of model clock of each process is zero. 
Upon interpretation of each action, its duration is added to the 
model clock of corresponding logical process.  

To reduce the interpretation time and enable one to 
perform the interpretation on the development computer, only 
the control flows of the processes and data exchange 
operations are modeled. This is possible because the 
execution time (duration) and other dynamic attributes of 
basic blocks are determined on the target system before the 
interpretation is started. The interpretation only propagates 
values of the dynamic attributes to other nodes of the model. 
Such an approach makes it possible to remove the variables 
whose values do not affect the control flow of the program 
from the basic block models. As a result, the part of the 

computations in which these variables are defined and used 
becomes dead code and is also removed. As a result, the 
amount of data to be processed and the total amount of 
computations performed in the course of the interpretation is 
reduced appreciably. The procedure just described can 
sometimes eliminate all the code from some basic blocks; 
such basic blocks are replaced by reduced blocks. 
 
3. INTERPRETATION OF THE MODEL 

The interpretation of an SPMD program model 
executed on p nodes of a parallel computing system (cluster) 
is performed in p logical processes each of which is executed 
in an individual thread. The interpretation consists in 
computation of control statements to determine a basic block 
which must be executed next and processing of chosen basic 
block. After the basic block is chosen the following actions 
are performed depending on its type:  

• For a computational block (the duration d of such 
blocks is determined in advance on the target 
platform), the duration d is added to model clock of 
corresponding logical process, and the control is 
returned to the interpreter.  

• For a reduced block (the duration d and other 
dynamic attributes of such blocks are determined 
before it is reduced), the duration d is added to 
model clock of corresponding logical process, and 
the control is returned to the interpreter.  

• For a block representing a communication function 
call, the control is returned to the interpreter, where 
the model of corresponding communication 
function is executed. In addition to transferring 
data between logical processes, the model 
estimates the communication execution time 
(duration) and adds estimated duration to model 
clock of corresponding logical process.  

• For a block representing a user function call, the 
control is returned to the interpreter, where the 
model of the function (method) is executed. In the 
course of the computation model execution, the 
current state is saved in a stack and the required 
data structures are loaded. After the interpretation 
of the model of the function is completed, the state 
that existed at the moment of calling the function is 
popped from the stack, and interpretation of the 
caller function’s model is continued. 

 
4.REDUCTION AND INTERPRETATION 
BY PARTS 

There is a reduction operation defined on the elements 
of the method’s model. The reduction of a basic block is the 
replacement of this block with a reduced block having an 
empty body and a fixed value of the dynamic attributes. The 
reduction of an internal node representing a Java statement 
consists in the depth-first traversal of the corresponding 
subtree with the sequential reduction of all its descendants 
beginning with the basic blocks. A necessary condition for a 
node reducibility is its closeness with respect to control (in the 
subtree rooted at this node, no values of the control variables 
used in other parts of the program are evaluated) and its 
closeness with respect to communications (if the subtree 
rooted at this node contains a call of a message send (receive) 
function, the corresponding call of the message receive (send) 
function must also be contained in the same subtree.  

The verification of the closeness property with respect 
to communications is reduced to finding the pair for each 
receive (send) operation, i.e., to finding the pairs send–recv. 
Some such pairs can be found using the static analysis in the 



course of the model generation; the information about the 
detected pairs is saved in the model. However, not all the 
pairs can be found using the static analysis. The remaining 
pairs are found by dynamic analysis in the course of the 
model interpretation. The pairs are found using the system 
predicate Match, which checks if the parameters of the 
functions send and recv (communicators, tags, and process 
identifiers) match each other. If a node does not meet the 
reducibility conditions, one can use the Model Analyzer tool 
included in ParJava to find the minimal subtree containing 
this node and satisfying the reducibility conditions. 
 
5. PARJAVA ENVIRONMENT 

The interpreter of the model of SPMD program is one 
of the tools of ParJava environment supporting the process of 
development of SPMD Java-programs using mainly a source 
computer. The information about dynamic attributes of an 
SPMD program obtained using ParJava interpreter allows to 
estimate its scalability domain walls, and helps application 
programmer to improve manually his program checking the 
improvements made by the interpreter.  

ParJava environment is integrated with Eclipse [18], 
the open source Java program development environment, thus 
forming the unified SPMD-program development 
environment including both ParJava tools and Eclipse tools 
(text editor, project build subsystem, incremental compilation 
facility, etc.).  

The first problem which had to be solved during 
implementation of ParJava was effective implementation of 
standard MPI library for Java. Several implementations of 
Java MPI [19, 20] available through Internet do not provide 
effective data communications and miss some MPI functions. 
Therefore a new version of MPI for Java environment 
(mpiJava library) was implemented. The current version of 
mpiJava supports all functions of MPI-1.1 standard and 
parallel input/output of MPI-2 standard as well. mpiJava 
library is implemented using JNI binding techniques by 
analogy with C++ binding described in MPI-2 standard.  

Besides the model builder and its interpreter ParJava 
provides several tools (such as Loop Analyzer, Model 
Explorer, Model Editor, etc.) facilitating development and 
tuning of SPMD Java-programs. ParJava interpreter allows to 
obtain estimations of speed-up of a program which are precise 
enough; the error does not exceed 10% on real applications 
and is estimated as 5% on average. The final values of 
parameters of the SPMD program can be improved using the 
target cluster. 

6. EXAMPLES AND NUMERICAL 
RESULTS  

Admissibility of practical application of ParJava 
environment was tested using several sample SPMD programs 
and one real SPMD program. Here some examples are 
presented.  

The first sample program is very simple. It provides 
the solution of the system of 10,000 linear algebraic equations 
by means of Jacoby iteration algorithm (Jacoby sample 
program). As it is seen on Fig. 1 shows the values of speed up 
obtained using interpreter (broken curve) are close to those 
obtained during real execution of the program (firm curve).  

The second sample program provides the solution of 
linear heat conduction equation in rectangular region (Heat 
conduction sample program). The results are presented in 
Table 1 (the relative error of estimation did not exceed 0.7%). 
In this example the number of matrix elements is increased 
together with number of MPI processes in such a way that 

amount of data in each process remains practically unchanged 
(J. Gustafson’s scaled-size scalability model [21]).  

 
Understanding that sample programs, being very 

simple and taking too little time for execution, do not let to 
appreciate the advantages of ParJava, we added the third 
example. 

Fig. 1. Estimated and real speed up for Jacoby sample program
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The example presents a real scalable parallel program 
calculating numerical solution of non-linear system of partial 
differential equations, modeling the processes and origin 
conditions of intensive atmospheric vortices in 3D 
compressible atmosphere according to the theory of 
mesovortice turbulence by V. Nikolaevskiy. The program was 
developed in the Institute for System Programming RAS in 
collaboration with the Institute of Physics of the Earth RAS 
using ParJava environment and is intended to be executed 
using high-performance clusters. The system of equations was 

Fig. 2. Comparison of modeled and real program speed-up for blocking 
and non-blocking communications.
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obtained in [22, 23] and is a strongly non-linear system of the 
mixed type.  

The test computations held at the ISP RAS cluster (16 
nodes, 4 processor per node, Intel® Xeon® CPU X5355 @ 
2.66GHz Myrinet Express 2000).  

Program has been modeled by interpreter. The 
interpretation was carried in several sessions and included 
partial interpretation of the main loop and some of methods. 
Each session did not take time more than three hours. The 
execution time of the program is about 30 hours (it was 
divided into two intervals using control point mechanism 
implemented in ParJava environment). The results are 
presented on Fig.2. Comparison of real and model speed up 
curves shows that modeling is precise enough: the error did 
not exceed 5% in average.  

Also from Fig 2 is seen, that replacement of blocking 
MPI communication functions (send, resv) by non-blocking 
ones (isend, iresv) significantly improves program’s speed-up. 
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