
A New Workload Model for Parallel I/O Systems

Daniel Versick
University of Rostock, Institute of Computer Science

Rostock, Germany

e-mail: daniel.versick@uni-rostock.de

Djamshid Tavangarian
University of Rostock, Institute of Computer Science

Rostock, Germany

e-mail: djamshid.tavangarian@uni-rostock.de

ABSTRACT
The analysis of computational systems for high performance
computing (HPC) applications has been examined in many
scientific surveys in the past. However, the input/output
(I/O) of such applications has been marginally considered.
There are some I/O benchmarks for MPI-IO, a standard
interface for I/O access to secondary storage in HPC en-
vironments, which often use a static workload that cannot
be changed by the user. Therefore, resulting measurements
are often not representing user-relevant applications. This
paper describes a novel I/O measurement approach for MPI-
IO based applications enabling the user to employ any I/O
workload he wants to use. Thus, it is necessary to define
a workload model specifying any I/O workload in a simple,
but exact way. This paper introduces such an I/O workload
model for MPI-IO and an I/O benchmark using this work-
load model. Practical tests describe how such a workload
can be generated and present measurements to prove the
introduced approach.

Keywords
I/O benchmarking, high performance I/O, workload model

1. INTRODUCTION
Performance evaluation of parallel computer systems usu-
ally examines the performance of CPUs and network connec-
tions. This is an acceptable way when analyzing applications
that only load or store small amounts of data. However,
there is an increasing number of data-intensive applications
that have to read large amounts of information from the
file system. For example, NWChem [1] and QCRD (Quan-
tum Chemical Reaction Dynamics) [2] are codes that have
to read large matrices from secondary storage that are not
fitting into main memory. Their input/output (I/O) behav-
ior has a big impact on the whole application performance.
As the performance of data transfer from I/O systems to
CPUs does not increase as fast as the processor speed, fu-
ture CPUs will not be able to exploit full computational
capabilities. An accurate measurement and optimization of
I/O systems is necessary to minimize their negative impact
on performance [3]. It also supports the development of
future highly efficient I/O systems.

There are three ways of analyzing application performance:
analytical modeling, simulations, and measurements. Where-
as all methods have their use cases, measurements are the
only possibility of performance analysis comprising the whole

complexity of an I/O system in the field. In case of measur-
ing computer systems performance, benchmarks are widely-
used measurement tools [4]. Benchmarks are applications
that generate a specific workload and measure its perfor-
mance when processing this workload. I/O benchmarks as
a special form of benchmarks use an I/O workload and mea-
sure I/O performance. Most existing I/O benchmarks em-
ploy static workloads that can only be adapted in a few or
even no parameters [5]. Thus, these benchmarks deploy one
specific workload that is characteristic for only one appli-
cation. Other user-defined workloads that are necessary for
user-relevant results are not applicable. This paper presents
a novel I/O benchmark enabling the user to define any I/O
workload and thus to analyze the I/O performance of any
possible application. The benchmark system focuses on the
definition of workloads using the MPI-IO interface that is
part of the MPI-2 (Message Passing Interface) standard for
HPC applications [6] and has been specified for parallel data
access of high performance applications to secondary storage
systems.

At the beginning, this paper introduces an I/O workload
model as the basis for a novel benchmark approach that
allows to define any I/O workload for MPI-IO. Afterwards,
we demonstrate a benchmark application implementing this
novel approach before showing measurement results to prove
the concept.

2. I/O BENCHMARKING
Existing I/O benchmarks often employ static I/O work-
loads defined by the programmer of the benchmark software.
Sometimes this workload characterizes a common applica-
tion behavior of an existing application (e. g. by using the
application itself or by reproducing the workload as close as
possible). Such application benchmarks determine the I/O
performance of a computer system executing the applica-
tion that is reproduced by the benchmark. Other applica-
tions that could be much more interesting for the user are
not included by this approach. Their performance can vary
very strongly from performance values determined by ap-
plication benchmarks. Besides the application benchmarks,
there are synthetic benchmarks that use workloads repre-
senting no currently available application. They perform
operations defined by the programmer attempting to repre-
sent many applications as best as possible. Indeed, these
benchmarks measure the performance of an ,,average appli-
cation” and not of the specific one that is interesting for the
user [7]. Only I/O benchmarks allowing to handle any I/O
workload can be used to measure exact I/O performance
of any user-defined application. Such software tools will be
called application-based I/O benchmarks. Currently there
are only a few application-based I/O benchmarks especially
for the POSIX-I/O interface. POSIX-I/O is mainly used on
UNIX (and UNIX-like) systems to access files in a file sys-
tem. The well-known IOzone handles I/O workloads defined

1



in two files, one with write and one with read telemetry in-
formation. Every line in each file represents one I/O call and
consists of a byte offset, size of transfer and compute delay
in milliseconds. Thus, user-defined I/O workloads can be
realized, whereas some parameters of the I/O behavior like
the synchronism or the mix of read and write calls cannot be
specified. In [8] a benchmark is introduced that realizes any
POSIX-I/O behavior. It defines five parameters (called di-
mensions) for POSIX-I/O workloads. The whole I/O work-
load is summarized to these five parameters resulting in a
very abstract definition of an I/O workload.

Parallel applications have special requirements when access-
ing secondary storage. Often the applications are processing
big matrices. Their input and output results in I/O access
with non-contiguous character which means, that processes
write alternative bytes of a larger data type. Especially for
such applications parallel I/O interfaces are specified. MPI-
IO as part of the MPI-2 standard specification is such an
I/O interface for parallel I/O. There are some I/O bench-
marks for MPI-IO but most of them use one or more static
workloads (like b eff io [9], FLASH-I/O, LANL MPIO-IO
Test, mpi-tile-io, NPBIO [10], Parallel Input / Output Test
Suite, and PIO-Bench). The workload of IOR [11] in its
newest version and the HPIO (formerly known as NCIO)
[12] can be configured more flexible. IOR supports several
parameters, but it is not possible to specify asynchronous
I/O and any combination of read and write access. HPIO
has the goal to measure methods of accessing secondary stor-
age via so-called non-contiguous I/O. The access pattern of
non-contiguous I/O can be varied by using three parame-
ters. Therefore, HPIO allows to change the non-contiguous
I/O in an arbitrary manner without allowing to change the
I/O access methods itself (e. g. asynchronous I/O is not
possible).

Existing I/O benchmarks only apply limited workload de-
scriptions that are caused by a sketchy or even missing ana-
lysis of important parameters for describing I/O workloads.
Therefore, existing I/O workload models for parallel I/O
are not sufficient to specify any relevant I/O workload of
user applications. This paper presents a novel workload
model for parallel I/O that is developed by analyzing the
MPI-IO interface. Hence, it includes the most important
parameters for characterizing I/O workloads of parallel ap-
plications. It also introduces an I/O benchmark using this
workload model and shows measurements that prove the va-
lidity of the presented approach.

3. I/O WORKLOAD MODEL FOR MPI-IO
MPI-IO is a complex I/O interface designed for the specific
requirements of parallel application I/O access. It supports
an optimized access of multiple processes to one large file as-
suming the file system supports a high performance parallel
access to secondary storage. In the following we introduce
an I/O workload model for MPI-IO that covers the impor-
tant performance-related options of MPI-IO. Therefor, pa-
rameters are defined that can be used to quantify specific
attributes of I/O calls of parallel applications. Moreover,
this paper presents, how an I/O workload can be generated
using these I/O workload parameters.

3.1 I/O Workload Parameters
Table 1 shows all data access functions of MPI-IO as spec-
ified in [6]. Any of these data access methods has at least
the following I/O-related parameters:

• file handle that is returned when opening the file

• initial address of data in main memory (begin of buffer)

• number of data elements in buffer
• data type of each buffer element

These function parameters are the basis for first parame-
ters of the MPI-IO workload model. The file handle is a
unique handle defining a specific file in the file system and
is returned when opening the file by the MPI File open()
call. MPI File open() itself needs a file name, mode bits for
defining access rights to the file as well as an MPI communi-
cator, that is a data structure for defining the processes that
open the file concurrently. From the mentioned parameters
the number of processes is performance-related because the
more processes are involved in I/O the more processes have
to divide the bandwidth to access the file. Access rights de-
fine which process is allowed to access the file by reading or
writing methods but are not performance-related. The file
name defines which file has to be accessed. Every file has
a special file structure in the file system which could have
a performance impact. Files with a random order of blocks
are accessed slower than sequentially ordered blocks when
using a sequential access method. Since the I/O workload
model should abstract from specific data to allow the exe-
cution of the developed benchmark on every computer sys-
tem, the specific file layout is ignored in the following. The
initial address of data in main memory has a performance
influence in case that the computer system is a so-called
non-uniform-memory-architecture (NUMA) where memory
regions belonging to the current node are faster accessible
than those who correspond to other computer nodes. On
widely-used uniform-memory-architectures (UMA) the ini-
tial address of data in main memory has no performance
influence. Hence, this parameter is not included in the in-
troduced workload model. The number of data elements and
the data type (respectively the size) of each buffer element
are fundamental workload parameters influencing the I/O
performance when using the workload.

As it is depicted in Table 1 every data access function is ex-
isting as a reading version and a writing counterpart. There
can be defined a value that specifies all read data of an
application as a fraction of the completely transfered data.
These considerations lead to the following parameters of I/O
requests that are named as in [8]:

• processNum– the number of processes involved in an
I/O operation

• sizeMean– average size of one buffer element in bytes
• uniqueBytes– whole amount of transfered data in bytes

(the number of buffer elements multiplied with its size)
• readFrac– fraction of read bytes to all transfered bytes

positioning synchronism coordination

noncollective collective

explicit blocking MPI File read at MPI File read at all

offsets MPI File write at MPI File write at all

nonblocking & MPI File iread at MPI File read at all begin

split collective MPI File read at all end

MPI File iwrite at MPI File write at all begin

MPI File write at all end

individual blocking MPI File read MPI File read all

file pointers MPI File write MPI File write all

nonblocking & MPI File iread MPI File read all begin

split collective MPI File read all end

MPI File iwrite MPI File write all begin

MPI File write all end

shared blocking MPI File read shared MPI File read ordered

file pointer MPI File write shared MPI File write ordered

nonblocking & MPI File iread shared MPI File read ordered begin

split collective MPI File read ordered end

MPI File iwrite shared MPI File write ordered begin

MPI File write ordered end

Table 1. Overview of MPI-IO data access functions

Table 1 also presents further parameters. It shows that every
I/O function is existing in a non-collective and a collective

2



version as well as a blocking and a non-blocking counter-
part. Collective I/O are I/O calls done by a group of pro-
cesses. It is giving the possibility of collecting, reordering
and optimizing the I/O calls of the involved processes. Non-
blocking I/O that doesn’t block processes during sending or
receiving, gets more and more important in the high perfor-
mance computing sector. It allows to calculate new values
even while sending or receiving data concurrently. Thus, the
computational power is used in a more efficient way. These
two attributes result in two more parameters defined in our
novel workload model:

• collFrac– fraction of collective I/O calls as part of all I/O
calls

• syncFrac– fraction of blocking I/O calls as part of all I/O
calls

Furthermore, Table 1 shows three kinds of setting the start
position of data within a read or written file: explicit off-
sets, individual file pointers and shared file pointers. I/O
calls with explicit offsets are writing at a position within
a file that is specified as a function parameter of the call
and usually result in a random access on disk memory. Ac-
cess using individual file pointers use a file pointer defined
per process that is automatically increased by every I/O
call. Hence, individual file accesses result in sequential ac-
cess behavior for every process. Shared file pointer accesses
use one file pointer for all processes of an application. The
access of the processes is sequentialized which is usually
used for writing log files or similar. Anyhow, access to
non-sequential addresses using shared file pointers can also
be realized by using a seek-instruction before the data ac-
cess call. Seeks change the file pointer position, and result
in a non-sequential behavior. Hence, there can be defined
two different parameters which represent the three described
kinds of setting the start position:

• seqFrac– fraction of I/O calls accessing sequentially after
the previous I/O call onto the disk memory

• sharedFrac– fraction of I/O calls with shared file pointer

Every I/O call employs the parameter data type of each
buffer element. As shown before, this parameter is mapped
to sizeMean, the average size of the transfered data elements.
However, MPI-IO supports very complex data types com-
posed of simple data types like characters. It is also pos-
sible to define ,,holes” within the data type that are not
written by the specifying process. Different MPI processes
can use different self constructed data types in the same
I/O call. This results in the possibility of strided access
where one process of an application for example writes the
first and third byte of a data type and another process the
second and fourth byte consecutively. This, so-called non-
contiguous I/O cannot be covered by the parameter size-
Mean only. Therefore, it is necessary to define one more
parameter to specify the number of bytes that is accessed
by every process. Actually, it would be necessary to specify
such a parameter contMean for every process of an applica-
tion separately. Since most high performance applications
are doing similar computations and I/O operations in ev-
ery process, in most cases contMean would be equal for all
processes of the application. For this reason our introduced
workload model uses one value of contMean for all attend-
ing processes describing the number of contiguously accessed
bytes. This simplified model of the two parameters cont-
Mean and sizeMean is employed to specify MPI data types.

In summary, we defined nine parameters for specifying an
I/O workload behavior. The five parameters uniqueBytes,
sizeMean, processNum, readFrac, and seqFrac have also been
specified by Chen and Patterson in [8]. They defined a work-
load model for classical non-parallel I/O. The new parame-
ters collFrac, syncFrac, sharedFrac, and contMean have been

introduced with special focus on parallel I/O. All these pa-
rameters can be employed to specify workloads of parallel
I/O by abstracting the attributes of many I/O calls. In this
way the whole application I/O behavior can be abstracted
to nine parameter values.

3.2 Application I/O Workload
In [8] it is proposed to combine all I/O calls of an appli-
cation to one I/O working point that would consist of the
introduced nine workload parameters when using the de-
scribed workload model. Because this approach produces
a very abstract specification we propose to permit the user
to decide how many I/O calls should be combined to one
I/O working point. Hence, the user defines these nine pa-
rameter values only for a subset of all application I/O calls
such in a way that the whole application I/O behavior is
a sequential list of vectors each of them described by the
nine parameters. Hence, one application I/O behavior can
be specified using different descriptions that have varying
granularities. High-granular descriptions would use one I/O
working point (nine I/O workload parameters) for every I/O
call, and low-granular descriptions utilize one working point
for the whole I/O behavior of an application. Granularities
in-between are also possible.

3.3 PRIOmark - Parallel I/O Benchmark
In the context of the IPACS (Integrated Performance Ana-
lysis of Computer Systems [7]) project we implemented an
I/O benchmark using the described workload model. The
PRIOmark - Parallel I/O benchmark [13] can be employed
to emulate the I/O behavior of any application using the
MPI-IO interface. I/O workloads have to be defined using
an XML file that supports a concatenation of I/O work-
ing points with each of the introduced workload parame-
ters. At the moment all but the contMean parameter are
supported. ContMean will be part of the next software ver-
sion. The generation of workloads can be done using two
approaches: The user produces an XML workload defini-
tion with a graphical workload definition tool or he employs
the so-called I/O profiler. This tool analyzes the I/O be-
havior of a running MPI-IO application and automatically
produces an XML workload definition representing the an-
alyzed application.

4. MEASUREMENTS
In the following we present measurements of the PRIOmark
that prove the validity of the introduced workload model.
They have been made on a small PC cluster consisting of
four Linux-nodes and connected with Gigabit ethernet net-
work interfaces. Three of the four nodes are used as I/O
nodes (using IDE disks) that are combined to a big storage
using PVFS (Parallel Virtual File System).

Figure 1 depicts the results of the first measurement. Basis
of this measurement is an abstract workload representing
an average I/O behavior of a workstation used for stan-
dard office work (uniqueBytes=1 GB, sizeMean=8 kB, read-
Frac=80 %, seqFrac=20 %, processNum=8, syncFrac=78
%, collFrac=0 %, sharedFrac=0 %). Using this workload
eight measurements with changing values for every currently
supported parameter have been arranged to see the impact
of this parameter on the I/O performance. ProcessNum is
eight for all measurements except for the last two (shared-
Frac, syncFrac). There processNum had to be reduced to
avoid crashes of the MPI-IO system that were caused by in-
ternal MPI errors. All measurements show the throughput
while accessing the secondary storage depending on the pa-
rameter values. In most cases the results show an expected

3



Figure 1. Variation of Workload Parameters

behavior. Rising values for uniqueBytes result in a reduced
performance because caches cannot be used as efficiently.
Sequential access behavior causes a better performance as
well as a read-dominated workload. Collective I/O calls give
a higher potential of optimization. Thus, more collective
I/O calls result in a better I/O bandwidth as it is depicted
in Figure 1. Many small I/O requests (small values for size-
Mean) result in a poor I/O performance because every call
produces an overhead degrading the performance. Shared
file pointer access needs more synchronization between the
processes resulting in a performance loss. The performance
influence of non-blocking I/O cannot be seen very well in
these measurements. But it can be seen that the perfor-
mance rises up to a value of 80 per cent for syncFrac. After
that there is a small performance loss. This behavior could
be verified in other measurements, too. Probably the be-
havior emerged from the higher parallelism of asynchronous
I/O and the related conflicts of concurrently used resources.

The measurements show the impact of eight of the intro-
duced parameters on the I/O performance. The influence
complies with the expected behavior which shows that the
performance model can be used to represent many different
workloads. Since the workload parameters map the impor-
tant performance-related options of MPI-IO calls, it can be
used to specify any relevant MPI-IO workload. In contrast
to other I/O benchmarking systems the PRIOmark allows
to define very complex I/O workloads and enables the user
to acquire user-relevant results.

5. RESULTS
This paper introduced a novel approach of benchmarking
parallel I/O systems. The approach enables users to define

their own I/O workloads resulting in a very realistic I/O
measurement that is relevant for the user. For benchmarking
I/O systems based on a user-defined workload it is necessary
to specify these workloads. Such a workload specification
model had been introduced within this paper. The model
specifies I/O workloads that consist of I/O working points
each of them are defined by nine parameters. Finally, the
paper presented measurements proving the concept.

6. ACKNOWLEDGEMENT
We thank the German Ministry of Education and Research
for sponsoring this research as part of the Project Integrated
Performance Analysis of Computer Systems with research
grant 01IRB03E as well as our project partners Fraunhofer
Institute for Techno- and Business Mathematics, T-Systems,
National Energy Research Scientific Computing Center, and
the University of Mannheim for supporting our work.

REFERENCES
[1] Molecular Sciences Software Group. NWChem User

Documentation Release 5.1, 2007.

[2] Evgenia Smirni and Daniel Reed. Lessons from
characterizing input/output behavior of parallel scientific
applications. Performance Evaluation, 1245:169–180,
November 1998.

[3] John L. Hennessy and David A. Patterson. Computer
Architecture: A Quantitative Approach. Morgan
Kaufmann, 2006.

[4] Raj Jain. The Art of Computer Systems Performance
Analysis. John Wiley and Sons, Inc., New York, 1991.

[5] Michael Krietemeyer, Daniel Versick, and Djamshid
Tavangarian. The PRIOmark – Parallel I/O Benchmark. In
Proceedings of the IASTED International Conference on
Parallel and Distributed Computing and Networks, pages
595 – 600, 2005.

[6] Message Passing Interface Forum. Mpi-2: Extensions to the
message-passing interface. Technical report, University of
Tennessee, Knoxville, nov 2003.

[7] Michael Krietemeyer, Henry Ristau, Daniel Versick, and
Djamshid Tavangarian. Chapter 7. In Matthias Merz and
Michael Krietemeyer, editors, IPACS Benchmark -
Integrated Performance Analysis of Computer Systems,
pages 121–156. Logos Verlag, 2006.

[8] Peter M. Chen and David A. Patterson. A new approach to
I/O performance evaluation—self-scaling I/O benchmarks,
predicted I/O performance. In Proceedings of the 1993
ACM SIGMETRICS Conference on Measurement and
Modeling of Computer Systems, pages 1–12, Santa Clara,
CA, USA, 10–14 1993.

[9] Rolf Rabenseifner, Alice E. Koniges, Jean-Pierre Prost, and
Richard Hedges. The Parallel Effective I/O Bandwidth
Benchmark: b eff io. In 2e soumission a Calculateurs
paralleles, 11 2001.

[10] Parkson Wong and Rob F. Van der Wijngaart. NAS
Parallel Benchmarks I/O Version 2.4. Technical Report
NAS-03-002, NASA Advanced Supercomputing (NAS)
Division, 01 2003.

[11] W. Loewe, R. Hedges, McLarty T., and C. Morrone. Llnl’s
parallel i/o testing tools and techniques for asc parallel file
systems. In Proceedings of the 2004 IEEE Cluster
Computing Conference, San Diego, 2004.

[12] Avery Ching, Alok Choudhary, Wei Keng Liao, Lee Ward,
and Neil Pundit. Evaluating I/O characteristics and
methods for storing structured scientific data. In
Proceedings of the International Parallel and Distributed
Processing Symposium, April 2006.

[13] Michael Krietemeyer, Heiko Kopp, Daniel Versick, and
Djamshid Tavangarian. Environment for i/o performance
measurement of distributed and local secondary storage. In
Proceedings of the International Conference on Parallel
Processing Workshops, pages 501–508. IEEE, 2005.

4


