
Semantic description of services: issues and examples.

Aurélie Hurault, Frédéric Camillo, Michel
Daydé, Ronan Guivarch, Marc Pantel, Chiara

Puglisi
University of Toulouse-IRIT, France

e-mail:
hurault,camillo,dayde,pantel,puglisi@enseeiht.fr

Hrachya Astsatryan
Institute for Informatics and Automation Problems,

Armenia

e-mail: hrach@sci.am

ABSTRACT
In this paper, we concentrate on the semantic description of
services. We explain why it is a crucial problem. Different
solutions are described and we will see that the selection a
type of description depends of the precision needed.

We illustrate this with two examples that requires different
levels of description: the GRID-TLSE project and a trader
based on an advanced semantic description of services.

Keywords
Service, Semantic description, Grid

1. INTRODUCTION
Object programming language, component-based software
engineering, web-services architecture,. . . are all techniques
that have been introduced to achieve re-usability of soft-
ware. It is clear that this goal is not fully reached. One
of the limitation of these approaches lies in the difficulty
to find the ”right” object / component / service /. . . . In
the following ”objects / components / services /. . . ” will be
called services.

This is still an active area of research because of the avail-
ability of large scale distributed infrastructure that provide
access to a wide range of services and resources (web ser-
vices over the internet, numerical codes over large clusters,
. . .) on various architectural platforms. In order to take ad-
vantage of this huge number of services, we still need a way
to identify the ”right” service (or composition of services).

We face two problems. First, finding a description precise
enough to be able to say that it is the ”right” service. Sec-
ondly, developing tools that help us to automatically find the
service or the combination of services that solve our prob-
lems.
Both problems are obviously correlated, since the matching
algorithm depends on the service description used.

In the following, we study the current available solutions,
and give two examples in which the description of services
is a key point.

2. CURRENT SOLUTIONS
The simplest description which is used in most SOA (Service
Oriented Architecture) [5] such as RPC, CORBA1, COM,
DCOM, RMI only makes use of the service signatures (input

1http://www.corba.org/

and output types of the service). This information has the
advantage to be easily available. However, it is not sufficient
for a sophisticated matching, even if subtyping or type iso-
morphisms are used to remove the problems of parameter
position. Indeed, with such an approach there is no way to
distinguish addition from multiplication as they both share
the same signature. But, the signature is used in almost all
other approaches.

We can add keywords or meta-data to the service signature
(this is currently the case in the Grid-Tlse project2 [4, 8],
with some added constraints, see next section). A disad-
vantage is the difficulty to describe a complex service. For
example, it is very difficult to describe without ambiguity
and using keywords some of the Level 3 BLAS procedures
such as SGEMM that provides the matrix-matrix opera-
tion: α ∗A ∗B + β ∗C (simple precision). However, such a
formalism allows an easy search of the services that answer a
user request. It requires a preliminary agreement to define
the keywords and their meaning, with all the ambiguities
inherent to natural language.

In some other SOA that are web services oriented, a service
broker (or service registry) is used to make accessible the ser-
vice interface and implementation. The UDDI3 (Universal
Description Discovery and Integration) is a way to manage
this registry while WSDL4 is used to describe services inter-
faces. UDDI is often compared to a telephone book’s white,
yellow, and green pages. Used as white pages, knowing the
name of the service is necessary to find it. Then, all de-
tails for using it are provided. The yellow pages are slightly
simpler since the services are stored by domain and allow
to find the one that fit the user need by using keywords or
classification. However, this approach does not provide an
easy way to combine services, even if it helps in solving some
problems like the distinction of multiplication and addition,
since more than the signature is given.

Another approach which extends keywords and metadata
is based on ontologies such as OWL [7, 1]. The advantage
of ontologies is the possibility to have a formal description.
It also provides the logic associated to reason about these
descriptions. The disadvantage is that there is no control on
this logic that may appen to be undecidable. Moreover the
definition of an ontology is not trivial and hard to achieve
for a non specialist.

In the Monet5 and HELM6 projects, the description of the

2http://gridtlse.org/
3http://uddi.xml.org/uddi-org
4http://www.w3.org/TR/wsdl
5http://monet.nag.co.uk/cocoon/monet/index.html
6http://helm.cs.unibo.it/

1

computational services is based on MathML7 and Open-
Math8 which provide an accurate description. But the com-
putation of the set of suitable services is based on RDF9 (Re-
source Description Framework) and ontologies which are not
easily adaptable to other domains. However for the math-
ematical domain, it is very interesting descriptions. The
solution proposed in the second example can be seen as a
generalization of those descriptions.

In the NASA Amphion project [9] and more particularly
the theorem prover Snark use a interesting method: in-
dependence of the application domain and reasoning based
on a description of the domain. But, the Amphion project
relies on ”term rewriting and the paramodulation rule for
reasoning about equality”. This supposes that ”a recursive
path ordering is supplied when the application domain theory
is formulated”. This last constraint requires that the user
be familiar with complex rewriting techniques. The second
used case described in the paper is really close to these ap-
proaches, but without asking the user to be familiar with
the underlying technologies.

3. APPLICATIVE EXAMPLES
We illustrate our approach with two different applications
that require a description of services at a different level. The
first one is the GRID-TLSE project. All the services have a
similar functionality but different algorithms are available.
The parameters and interfaces of the services are also not
uniform. As a consequence, the description should be at the
algorithmic level. The second application is a trader that
aims at finding the service or the combination of services
that fulfil the user request. In that case, we are not inter-
ested by all the algorithmic features of the services that are
then seen as black boxes.

3.1 The Grid-TLSE project
The Grid-TLSE10 is an expert site for sparse linear algebra
that provide tools and software for sparse matrices.

This work has been partially supported by the French Min-
istery of Research throught the GRID-TLSE Project from
ACI “Globalisation des Ressources Informatiques et des Don-
nées” and by the ANR (Agence Nationale de la Recherche)
through the LEGO and SOLSTICE Projects referenced re-
spectively ANR-05-CIGC-11 and ANR-06-CIS6-010.

It allows the comparative analysis of a number of direct
solvers (free or commercially distributed) on user-submitted
problems, as well as on matrices from collections available
on the site.

The site provides user assistance in choosing the right solver
for its problems and appropriate values for the control pa-
rameters of the selected solver. The computations are car-
ried over a computational grid.

3.1.1 Main Software Issues
The particular point of the TLSE problem is that the same
interface allow the users to access the several expertise sce-
narios and solvers and their parameters (using the DIET
middleware to access the GRID (see http://graal.ens-lyon.
fr/DIET). The solvers have the same functionality: solving

7http://www.w3.org/Math/
8http://www.openmath.org/cocoon/openmath/index.
html
9http://www.w3.org/RDF/

10http://gridtlse.org/

a linear system, but with different algorithms / implemen-
tation and different kind of parameters.

To answer the user request (e.g. what is the minimum
amount of memory required for factorizing my sparse matrix
or what is the fastest solver on my problem), experts pro-
vide scenarios which reduce the combinatorial nature and
produce useful synthetic comparison. It should be easy to
add new solvers which can be used by old scenarios, easy to
add new scenarios which use old solvers, and use the char-
acteristics of new solvers in new scenarios.

We see that most of the tools deployed within TLSE aim
at solving a linear system, but with many possible algo-
rithms, many possible control parameters, many values for
each parameter, many metrics to evaluate/compute numeri-
cal results, and many metrics to evaluate/compute software
runs.

How to provide a common API for all these packages ?

3.1.2 Semantic-based description
First of all, clients and providers of solvers must adapt dy-
namically to each other. As said in the first part, the de-
scription is based on meta-data and they should agree on
terms.

Once it is done, meta-data are used to describe: functional
decomposition of a sofwtare (it usually involves several func-
tionalities), control parameters and their values, metrics and
their values, qualitative and quantitative dependencies be-
tween the values of metrics and control parameters.

But to be able to use such an approach on other applica-
tion areas, or to be adapted, addition of new meta-data and
corresponding values should be easy.

3.1.3 Using Abstract Parameters
From the Web interface (to define the objective and param-
eters of the scenarios) up to the service description, it is
critical to use a common set of abstract parameters.

A service has two kind of properties: its functionalities (as-
sembled / elemental entries, type of factorization (LU , LDLT ,
QR), multiprocessor, multiple right-hand sides) and the al-
gorithmic properties (unsymmetric / symmetric solver, mul-
tifrontal, left / right looking, pivoting strategy).

To describe a scenario in addition to service parameters,
the expert user should add the metrics (memory, numerical
precision, time, . . .) and the control (type of graphs for
post-processing, level of user).

Abstract parameters are used to express constraints and/or
relations. For example, it should be possible to :

• Select only a symmetric solver if the matrix A sym-
metric.

• Indicate that time and memory depend mostly on method
and permutations but also on scaling and pivoting.

• Indicate that numerical accuracy depends mostly on
pivoting but also on scaling and permutations.

• Advise orderings for QR based on ATA.

2

• Indicate that multiple right-hand sides option, although
not available, can still be performed (simulated within
the service dameon for example).

• Select a threshold for partial pivoting in [0. . . 1].

3.2 A trader based on advanced semantic de-
scription

The previous example was particular because all services
have the same functionality which implies that the descrip-
tion should go further to distinguish them at the algorithmic
level.

In the case of more general functionalities, we propose to use
a simpler description for the services for two main reasons:
First, it should be possible for a specialist of the application
domain to describe his own libraries without the help of a
specialist of the description formalism.
Second, the computation of the combination of services should
be performed in a reasonable amount of time.

We also want to have a precise description in order to obtain
only relevant solutions. To combine both requirements (a
fast algorithm and a precise description), we have decided to
work within a specific application domains. Our approach is
generic, parameterized by the description of the application
domain.

3.2.1 Description of the application domain
The application domain is represented by an order-sorted
signature (S, ≤, Σ) and a set of equations E. These equa-
tions allow to specify the domain operator properties (com-
mutativity, distributivity, zero element, . . .).

Overloading of operators is allowed to facilitate the user job.
When writing ”a + b”, we do not want to use a different
symbol for + depending on the types of a and b : for example
a+Int×Int→Int b and a+Matrix×Matrix→Matrix b. When an
equation is true for all the possible types of the variables (for
example a+b = b+a is true for all the types Ta, Tb such that
+ is defined on Ta×Tb and Tb×Ta) the user does not have to
specify the types of the variables. As a consequence, in the
algorithm, type verification is not enough and a mechanism
of type inference is required. Type inference is more complex
than type verification and overloading of operators, with
subtyping, make this task even more complex.

As a conclusion, the type system must be adapted to sub-
typing and overloading. In [3], Castagna proposes the λ&-
calculus for formalizing overloaded functions with sub-typing.
Our algorithm relies on his proposal.

Example : Simplified description of dense linear algebra
without subtyping and overloading.

S = {Matrix}

Σ = { 0 : →Matrix
I : →Matrix
+: Matrix×Matrix→Matrix
∗ : Matrix×Matrix→Matrix}

E= { x : Matrix x ∗ I = x
x : Matrix, I ∗ x = x
x : Matrix, x ∗ 0 = 0
x : Matrix, 0 ∗ x = 0
x, y : Matrix, x+ y = y + x
x : Matrix, x+ 0 = x
x, y, z : Matrix, x+ (y + z) = (x+ y) + z
x, y, z : Matrix, x ∗ (y ∗ z) = (x ∗ y) ∗ z
x, y, z : Matrix, x ∗ (y + z) = (x ∗ y) + (x ∗ z)
x, y, z : Matrix, (x+ y) ∗ z = (x ∗ z) + (y ∗ z)}

It is a very simplified example since we only take into ac-
count one sort: the matrices. We only define two constants
(zero matrix and identity matrix) and two operations (ad-
dition and multiplication of matrices). The set of equations
allow to define the main properties of the operators: null
element, identity element, commutativity, associativity, fac-
torization,

3.2.2 Managing services and requests
Once the application domain is described, the services and
requests are terms on the signature. Services can be defined
in separate libraries.

Example : Services and requests examples:

We define two services which manipulate some matrices:
s1(x : Matrix, y : Matrix) = x ∗ y
s2(x : Matrix, y : Matrix, z : Matrix, u : Matrix, w :
Matrix) = x ∗ (y ∗ w) + z ∗ u

We are looking for a service, or combination of services,
which allow to add two matrices:
a, b : Matrix, a+ b

3.2.3 Matching algorithm
Based on equational unification, and thanks to the work
of Gallier and Synder [6], a matching algorithm has been
developed. It allow to find the services and combination of
services that fulfill the user requirements.

Example : The user wants to solve the linear system with
multiple right-hand side members Ax = B (where no prop-
erty is known about A). We assume that the BLAS and
LAPACK libraries are available. One answer computed by
the trader is:

p1=A;

p2=(ipiv);

sgetrf(nbRow(p1),nbCol(p1),p,nbRow(p1),p2,(info));

//p2<-LU factorisation (A= P*L*U)?

p3=B;

slaswp(nbCol(p3),p3,nbRow(p3),(k1),(k2),p2,1);

//p3<- line swap B

p4= p3;

strsm(’l’, ’l’, ’n’, ’n’,nbRow(p4),nbCol(p4),1.0,

p1,nbRow(p1),p4,nbRow(p4));

//solve L*x=p3; p4<-x;

p5= p4;

strsm(’l’,’u’,’n’,’n’,nbRow(p5),nbCol(p5),1.0,

p1,nbRow(p1),p5,nbRow(p5));

//solve U*x=p4; p5<-x;

p5;

This is nothing else that what is provided by the expert rou-
tine SGESV from LAPACK which validates our approach.

3

3.2.4 A Grid-Aware Web Interface
We have also develop a Grid-aware Web interface for linear
algebra tasks combined with this advanced service trading
[2]. Developing efficient and portable codes, requires users
to face parallel computing and programming and to make
use of different standard libraries, such as the BLAS, LA-
PACK and ScaLAPACK in order to solve computational
tasks related to linear algebra. For this purpose, a scien-
tific computing environment based on a Web interface has
been developed. It allows users to perform their linear al-
gebra tasks without explicitly calling the above mentioned
libraries and software tools, as well as without installing any
piece of software on local computers: users enter algebraic
formula (such as in Matlab or Scilab) that are evaluated
for determining the combinations of services answering the
user request. Services are then executed locally or over the
Grid using the Distributed Interactive Engineering Toolbox
(DIET) middleware depending on the problem size.

4. CONCLUSION
We have seen in this paper that the description of service is
an important issue in some applications. There is not ONE
solution that can suite all the cases. We should adapt to the
level description needed. We should also adapt depending
on how precise should be the description, how fast should
be the matching algorithm, should we manage combination
or not...

In the first example, combination of services is not needed,
then a description based on meta-data is well adapted.

In the second one, we are looking for the service or the
combination of services satisfying a user resquest, thus the
description used should be precise enough to find the value
of the parameter and more formal (to be able to reason on).

REFERENCES
[1] Grigoris Antoniou and Frank van Harmelen. Web

ontology language: Owl. In S. Staab and R. Studer,
editors, Handbook on Ontologies in Information
Systems. Springer-Verlag, 2003.

[2] Hrachya Astsatryan, Vladimir Sahakyan, Youri
Shoukouryan, Michel Daydé, Aurélie Hurault, Marc
Pantel, and Eddy Caron. A Grid-Aware Web Interface
with Advanced Service Trading for Linear Algebra
Calculations. In International Meeting High
Performance Computing for Computational Science
(VECPAR), Toulouse, 24/06/2008-27/06/2008, 2008.

[3] Giuseppe Castagna, Giorgio Ghelli, and Giuseppe
Longo. A calculus for overloaded functions with
subtyping. In Proceedings of the ACM Conference on
Lisp and Functional Programming, volume 5, pages
182–192, 1992.

[4] Michel Daydé, Frédéric Desprez, Aurélie Hurault, and
Marc Pantel. On deploying scientific software within
the GRID-TLSE project . Computing Letters,
1(3):85–92, juillet 2005.

[5] Thomas Erl. Service-Oriented Architecture: Concepts,
Technology, and Design. Prentice Hall PTR, Upper
Saddle River, NJ, USA, 2005.

[6] Jean Gallier and Wayne Snyder. Complete Sets of
Transformations for General E-Unification. Theor.
Comput. Sci., 67(2-3):203–260, 1989.

[7] Deborah McGuinness and Frank van Harmelen. OWL
Web Ontology Language Overview, W3C
Recommendation, 2004.

[8] M. Pantel. Test of Large Systems of Equations on the
Grid: Meta-Data for Matrices, Computers, and Solvers.
In PMAA’04, 2004.

[9] Mark Stickel, Richard Waldinger, Michael Lowry,
Thomas Pressburger, and Ian Underwood. Deductive
composition of astronomical software from subroutine
libraries. In Conference on Automated Deduction, pages
341–355, 1994.

4

