
Software Tool for Cluster-based Modeling of
2D Cellular Automata ∗

Edmon Davtyan
Institute for Informatics and

Automation Problems
Yerevan, Armenia

e-mail: edmon@ipia.sci.am

Hasmik Karapetyan
Institute for Informatics and

Automation Problems
Yerevan, Armenia

e-mail: hasmikek@ipia.sci.am

Karine Shahbazyan
Institute for Informatics and

Automation Problems
Yerevan, Armenia

e-mail: shahb@ipia.sci.am

ABSTRACT
Th software tool SAS+ (Systolic Algorithm Simulator Plus)
allows to model two dimensional generalized cellular au-
tomata in the cluster-based environment. The suggested
tool supports:
• spatial and temporal inhomogeneities of cells transition
times;
• date-dependence of transition time of cells;
• dynamically resizing the successive configurations;
• arbitrary number of states of cells;
• use of external parameters.
The result of the SAS+ execution is a cluster-oriented pro-
gramming module which imitates the cellular automaton.

Keywords
Cellular automata, systolic array, Beowulf cluster computer,
software tool.

1. INTRODUCTION
A lot of software packages for cellular automata (CA) sim-
ulation has been designed. A survey on programming envi-
ronment for CA is provided for example in [3, 10].

Usually, virtual CA exploit data parallelism by partition-
ing cells of initial configuration among processors of parallel
computer. Each processor updates those cells that are as-
signed to it. In such a case simulation procedure involves
two cyclic synchronized phases: configuration’s states com-
putation and inter-processor communications phases. At the
communication phase the system has to be synchronized to
start the phase of the next configuration’s computation.

Our goal is the reduction of management overhead time.
We consider two causes of growth of management overhead
time.

1. The management overhead time depends on processors
idle time. The cell transition time may be highly data-
dependent and may vary from cell to cell and from con-
figuration to configuration. Besides the model may run on
a heterogeneous system. This implies that in the synchro-
nized system the achievable speedup does not scale with the
increase of the number of processors.

2. The management overhead time strongly depends on the

∗This research has been supported by the grant ISTC A-
1451.

volume and number of inter-processor communications. In
the synchronized system inter-processor communications are
repeated after each computation of new configuration, where
each processor transmits data to 8 processors.

We suggest a software tool SAS+ implementing the simu-
lation of a two-dimensional CA [5, 6]. SAS+ supposes that
cells are situated on the infinite lattice. Each cell is con-
nected to the cells of Moore neighborhood of radius 1. For
reduction of management overhead time we abandon the
idea of constructing the synchronized model of CA in favor
of a dynamic data driven model. Instead of partitioning the
2D set of cells, the algorithm merges the 3D set of all tran-
sitions of CA into 3D tiles pairwise similar, i.e., collections
of transitions to be executed as a single unit by a proces-
sor. The choice of these tiles is based on minimization of
the management overhead time.

The suggested partitioning into tiles minimizes
• the number of interprocessor communications
• the volume of sent and received data per tile.

The set of transitions of all cells may be considered as the set
of integral points of 3D-space with causal relations induced
by information transmission among cells. Then the synchro-
nized modeling can be viewed as simultaneous realization of
transitions lying on the same plane. On the other hand, the
transitions can be realized in any order that respects the
partial order of causal relations. From this viewpoint the
transitions of any tile may be realized at any moment after
all preceding tile transitions are accomplished.

Our simulator explores the dynamic data driven mapping of
tiles to processors in order to balance the total load between
the processing nodes and minimizes the number of inter-
processor communications [2].

Our algorithm can deal with CA, where different transitions
may take different computation time depending on the state
of the neighborhood. Moreover, the time of transition may
depend on spatial position of the cell and the serial num-
ber of configuration. This means that spatial and temporal
inhomogeneities of transitions are supported. For efficient
implementation we reformulate the time driven simulation
to the data driven simulation, where computations may co-
incide with communications.

In this paper we consider two implementations of CA model-
ing, based on our algorithm [5, 6].Then we bring the results
of the experiments on various types of problems. Finally,
detailed description of SAS+ use is presented.

1

2. TWO IMPLEMENTATION WAYS FOR CA
MODELING

A tile is an oblique parallelepiped whose boundaries are not
parallel to the space-time axis.

They split the 3D-space to parallelepipeds (1):
{

ak < x + y + 2z ≤ a(k + 1)
bl < x− y + 2z ≤ b(l + 1) (1)
cm ≤ −2x + 2z < c(m + 1)

A tile is a set of integral points (x, y, z) where z ≥ 0, that
satisfy conditions (1) and is defined by three parameters
k, l, m. The parameters a, b, c may be used for managing
tiles volume. In SAS+ we put

a = b = 2c = n (2)

thus reducing the number of controlling parameters to one
parameter n that defines the tiles volume as O(n3). Then
the volume of transmitted data is O(n2).

The management overhead time compared with transitions’
computation time of CA is O(n−1) if the volume of the tile
is O(n3).

Implementations of 2D CA modeling are performed such
that one of processors is used as a host processor which man-
ages the process. Other processors are slaves which carry out
the host’s orders. The algorithm applies the dynamic data
driven mapping of tiles to processors, that is realized by
the host processor. Each slave processor fulfils transitions
of all cells of the scheduled tile. The algorithm generates
new tiles and annihilates the executed ones. The algorithm
selects and disregards the stable tiles, consisting of stable
states, even if they are surrounded by nonstable tiles. Two
versions of mentioned implementations are described below.

Version 1 of SAS+ : All computational resources can be
held in the personal store of host processor. In this case
all slaves send the data to the host and receive them from
the host. This version is recommended for the modeling
cellular automata when the required memory is less than
the memory of host processor. In this case slaves exchange
the data via host processor.

Version 2 of SAS+ : Computational resources are distributed
among personal stores of slave processors. In this case slaves
exchange the data directly and the memory of the process
is the sum of memories of slave processors.

3. EXPERIMENTS
We carry out the modeling of a series of cellular automata
for the purpose of definition of optimal parameter n for our
model for both Versions. Besides our experiments show the
measure of overheads for both Versions.

The parallel application runs on the cluster of PCs con-
nected by Myrinet [11]. 6 parallel processors of the cluster
are used.

The experiments were carried out for the following well-
known problems:

1. Forest-fire model of Drossel and Shwabl [7].The example
of constant configurations. All configurations including ini-

tial configuration are lattices 900×900. 100 configurations
were computed in both versions.

Table 1. Fire
Version 1 in seconds Version 2 in seconds

n=10 24003 1341
n=15 7653 791
n=25 1715 934
n=30 1183 1215
n=50 269 3284

2. A problem of Prisoner’s dilemma [9].
The example of 270 states of the cells. All configurations in-
cluding initial configuration are lattices 900×900. 100 con-
figurations were computed in both versions.

Table 2. Prisoner’s dilemma
Version 1 in seconds Version 2 in seconds

n=10 24842 2207
n=15 8025 1037
n=25 1917 1003
n=30 1384 1283
n=50 368 4517

3. A problem with identical transition function - the mea-
surement of management overhead time. The computations
were carried out on constant 900×900 lattice, 100 configu-
rations were computed in both versions.

Table 3. Identical
Version 1 in seconds Version 2 in seconds

n=10 23970 1298
n=15 7639 758
n=25 1712 916
n=30 1181 1204
n=50 268 3393

4. A problem with heterogenous transition function on 900×900
constant lattice. 100 configurations were computed in both
versions.

Table 4. Heterogeneous
Version 1 in seconds Version 2 in seconds

n=10 24655 1394
n=15 7913 828
n=25 1819 1009
n=30 1272 1319
n=50 469 3578

5. Bak-Tang-Wiesenfeld sandpile[1]. The example of grow-
ing configurations. The initial configuration consists of only
one cell. 5000 grains dropped on the center of lattice. Af-
ter 5000 steps the final configuration consists of 1000×1000
cells.

Table 5. Sandpile
Version 1 in seconds Version 2 in seconds

n=10 33 24
n=15 53 45
n=25 133 126
n=30 195 186
n=50 539 524

2

6. Langton’s Ant Journey[8]: The example of an irregular
resized configurations. 5000 configurations were computed
in both versions.

Table 6. Ant
Version 1 in seconds Version 2 in seconds

n=10 20 20
n=15 41 40
n=25 111 114
n=30 165 170
n=50 500 509

The experiments show:

• If sizes of configurations are constant, then the Version 1
with parameter n = 50 is preferable.;
• If configurations are resized at the time of computations,
then the Version 2 with parameter n = 20 is preferable.
• The managements overhead time constitutes the most part
of computation time.

Version 1 is chosen as a template of 2D cellular automata
modeling way for SAS+ automatic system.

4. HOW TO USE SAS+ ?
The software tool SAS+ is intended for imitation both one-
dimensional (1D-CA) and two-dimensional (2D-CA) on
a homogeneous computational cluster (ArmCluster) . The
choice of 1D-CA or 2D-CA is realized by typing ”a” or ”b”
when running ”SAS+” in command line.

Detailed explanation of the simulator of the 1D-CA is given
in [3, 4]. Therefore we present here only 2D-CA modeling.

To use SAS+ the user must have some knowledge of basic
concepts of the programming language C, as well some skills
in setting CA components.

To model 2D-CA on SAS+ user must give the description
of desirable CA. In general this description consists of

• initial configuration ;
• Computation function which realizes one cell’s transition;
• number of output configurations (Configuration).

Let us consider each of these items.

Initial configuration is a rectangular [Row × Column]
table on the plane of CA, where all non-stable cells of initial
configuration are situated. The rest of the plane is supposed
to be completed by stable states.

Each square (i, j) of the table must contain a string of w
ASCI symbols – the initial states of the cells. Initial con-
figuration should be set by user as a text file, that includes
w×Row×Column symbols in one line. The variables Row
and Column should be set by user.

The variable stable is such a state of cell, that if all cells of
neighborhood of the cell have the state stable then Computation
of the next state returns stable state.

In all, the user should set for description of initial configu-
ration the following:

• values w (number of cell’s states), Configuration, Row,

Column;
• the state stable (a string with length w);
• the file of initial states.

Computation – the program of transitions of any cell.
Computation function has 12 arguments (the space-temporal
coordinates of the transition and 9 states of its neighbor-
hood) and returns new state.

The body of Computation uses C or C++ languages.

Computation should have the property: there exists a state
(its name is stable) such that if all neighbors of a cell have
stable state, then Computation returns the state stable.

Computation function may use the external parameters.
These parameters should be set by user before starting SAS+.
Those parameters are :

• arguments Arg1 ,Arg2 , ...,ArgA of types int, char, string;
• files Data File1 , ...,Data FileF .

In this connection, variables Size Data Filei gives the length
of Data Filei and function Datum Filei(j) returns the j-st
element of Data Filei .

All mentioned arguments, variables and functions can be
used in Computation function. The prototype of Computation
is given below.

string Computation(int x, int y, int z, string s, string r,
string l, string d, string dr, string dl, string u, string ur,
string ul), where

x is the row of current cell (0 ≤ x < Row),
y is the column of current cell (0 ≤ y < Column),
z is the number of configuration of current cell (0 ≤ z <
Configuration),
s is the state of current cell (a string with length w),
r is the state of current cell’s right neighbor (a string with
length w),
l is the state of current cell’s left neighbor (a string with
length w),
d is the state of current cell’s down neighbor (a string with
length w),
dr is the state of current cell’s down-right neighbor (a string
with length w),
dl is the state of current cell’s down-left neighbor (a string
with length w),
u is the state of current cell’s upper neighbor (a string with
length w),
ur is the state of current cell’s upper-right neighbor (a string
with length w),
ul is the state of current cell’s upper-left neighbor (a string
with length w).

This function describes the transition of each cell in the
cellular automaton.

This completes the entry procedure of the cellular automa-
ton. During the entry procedure the user is allowed to edit
and correct the description components of the cellular au-
tomaton. At this stage a corresponding message is sent and
it is offered to reenter valid data in case if errors of various
types are detected. The user can terminate the work of the
program by inputting the symbol ’q’.

The second stage of the software tools functioning is per-

3

formed without any participation of the user. The whole
input data are classified and recorded in a temporary file.
Based on the contest of this file, all variables and functions
mentioned above are declared and defined in programming
language C++. The programming code for cellular automa-
ton described at the input of the program is constructed also
using the same programming language.

As a result of SAS+ execution, in user’s domain of the op-
erating system Linux, a folder having the same name as the
programming module, is created, which contains the pro-
gramming module and the ”readme.txt” file. In the men-
tioned text file the user may find some useful information on
the programming module, on running of cluster-based pro-
gramming module, as well as on input data of the program.

An example of input information of the SAS+ for the sand-
pile problem [1] is presented below: the initial configuration
is a text file with ’1’ non-stable symbol.
w = 1
Row = 1
Column = 1
Configuration = 5000
stable = ”0”.

string Computation(int x, int y, int z, string s, string r,
string l, string d, string dr, string dl, string u, string ur,
string ul){
if (strcmp (r.c str(), stable) == 0 &&
strcmp (l.c str(), stable) == 0 &&
strcmp (d.c str(), stable) == 0 &&
strcmp (dr.c str(), stable) == 0 &&
strcmp (dl.c str(), stable) == 0 &&
strcmp (u.c str(), stable) == 0 &&
strcmp (ur.c str(), stable) == 0 &&
strcmp (ul.c str(), stable) == 0 &&
strcmp (s.c str(), stable) == 0)
return string (stable);
if (s[0] ≥ ’4’) s[0] -= 4;
if ((x == 0) && (y == 0)) s[0]++;
if (u[0] ≥ ’4’) s[0]++;
if (d[0] ≥ ’4’) s[0]++;
if (l[0] ≥ ’4’) s[0]++;
if (r[0] ≥ ’4’) s[0]++;
return s; }

REFERENCES
[1] Per Bak, Chao Tang and Kurt Wiesenfeld.

Self-organized criticality. Physical Review A 38, pp.
364-374, 1988.

[2] E.Davtyan. On the Modelling of One Class of Systolic
Structures on a PC Cluster. Proceedings of Int. Conf.
on Computer Science and Information Technologies,
pp. 340-344, Yerevan, 2003.

[3] E.M.Davtyan. On a Software Tool for Implementation
of Systolic Algorithms in the Cluster Environment.
Mathematical Problems of Computer Science,
Transactions of IIAP NAS RA, Volume 23, pp. 47-53,
Yerevan, 2004.

[4] E.Davtyan, H.Karapetyan, A.Kocharyan,
K.Shahbazyan, Yu.Shoukourian. Implementation of
one dimensional systolic arrays on a beowulf cluster
computer. Proceedings of Int. Conf. on Computer
Science and Information Technologies, pp. 54-60,
Yerevan, 2005.

[5] E.M.Davtyan, K.V.Shahbazyan. Asynchronous
modeling of 2D cellular automata on the PC-cluster.

Preprint N 08-03/1 IIAP NAS RA, 36 pages, Yerevan,
2008. (in Russian)

[6] E.M.Davtyan, K.V.Shahbazyan. Asynchronous
modeling of synchronous 2D cellular automata. The
second international conference ”Supercomputer
Systems and Applications”, Reports, pp. 39-43,
Minsk, October 27-29, 2008. (in Russian)

[7] B. Drossel and F. Schwabl. Self-organized critical
forest-fire model. Phys. Rev. Lett. 69, pp. 16291632,
1992.

[8] A. Gajardo, A. Moreira, E. Goles. Complexity of
Langton’s ant. Discrete Applied Mathematics 117, pp.
4150, 15 March 2002.

[9] Melanie Mitchell. An Introduction to Genetic
Algorithms.A Bradford Book, The MIT Press,
Cambridge, Massachusetts, London, England, 1996.

[10] T. Worsch, ”Programming environments for cellular
automata”, Technical report 37/96, Universitat
Karlsruhe, Fakultat fur Informatik, November 1996.

[11] ArmCluster : http://www.cluster.am

4

