
On the Optimization of Functional Symbol-Free Logic
Programs

Suren Khachatryan
Yerevan State University

Yerevan, Armenia

e-mail: suren1525@gmail.com

ABSTRACT
In this paper logic programs that do not use functional
symbols are studied.
Logic programs are equivalent if the sets of goals that
are logical consequences of the programs are the same.
The later is called ∆-equivalence.
A program is terminating if the SLD-tree, correspond-
ing to that program and any permitted goal, is finite.
In other words, for terminating programs and permit-
ted goals, any interpreter based on SLD-resolution can
decide whether a given goal is a logical consequence of
a given program or not.
In general, functional symbol-free programs are not ter-
minating.
We present a transforming algorithm by which any func-
tional symbol-free program is transformed into a termi-
nating program. The program obtained via transforma-
tion and the original program are ∆-equivalent.
This transformation saves the main structure of the pro-
gram by adding constraints.

Keywords
Logic programming, transformation, termination, func-
tional symbol-free programs.

1. INTRODUCTION
In logic programming Herbrand interpretation has com-
monly been considered. Following this convention, we
consider Herbrand interpretations only.
It follows from Churchs theorem that there are no algo-
rithms for arbitrary logic programs to resolve whether
a given goal is their logical consequence or not. Thus,
it seems appropriate to study specific cases of logic pro-
grams.
Some classes of terminating programs (for terminating
programs, any interpreter based on SLD-resolution can
decide whether a given goal is a logical consequence of
a given program or not) are studied in [1,2]. For ter-
minating programs, the SLD-tree, corresponding to a
given program and a given permitted goal, is finite.
In [3] variable-free programs (i.e. programs that do not
use variables) are analyzed. The given article presents
a transformation by which any variable-free program
is altered into a terminating program. We study logic
programs which use variables but do not use functional
symbols of arity 1 (henceforth referred to as FSF pro-
grams).
A decidable interpreter is known to exist for FSF pro-
grams [see 4]. However, on the whole FSF programs are

not terminating.
We present a transforming algorithm by which any FSF
program is transformed into a terminating program.
The program obtained via transformation and the orig-
inal program are ∆-equivalent.

2. PRELIMINARIES
In this section we recall some basic notations of logic
programming. For notations not defined here, the reader
may refer to [5,6].

We will usually denote variables by x, y, z, ..., functional
symbols by f, g, ..., predicate symbols by p, q, ..., terms
by s, t, ... and formulas by F,G, Each functional sym-
bol has an associated non-negative integer called its ar-
ity. If the arity of a functional symbol is n, the func-
tional symbol is called n-ary. Nullary(0-ary) functional
symbols are called constants.

A program clause is a formula of the form

∀(B1 ∧ ... ∧Bm → A),

where m ≥ 0, B1, ..., Bm and A are atoms.
We will write the above clause in the casual notation as

A : −B1, ..., Bm.

The atom A is called the head and the sequence of atoms
B1, ..., Bm the body of the clause.
A goal is a formula of the form

∃(C1 ∧ ... ∧ Ck),

where k > 0 and C1, ..., Ck are atoms.
We will write the above goal in the casual notation as

?− C1, ..., Ck.

A logic program is a finite set of program clauses.
A substitution θ = {t1/x1, ..., tn/xn} is a finite set of
pairs of a variable and a term, where ti is distinct from
xi and the variables x1, ..., xn are also distinct. A simple
expression is either a term or an atom. If E is a simple
expression Eθ denotes the simple expression obtained
from E by simultaneously replacing each occurrence of
the variable xi in E by the term ti(i = 1, ..., n). Let
σ = {τ1/y1, ..., τm/ym} be a substitution, then the com-
position θσ of θ and σ is the substitution obtained from
the set

{t1σ/x1, ..., tnσ/xn, τ1/y1, ..., τm/ym}

by deleting any pair tiσ/xi for which xi = tiσ and delet-
ing any pair τj/yj for which yj ∈ {x1, ..., xn}. If L =
{E1, ..., En} is a finite set of simple expressions and θ is
a substitution, then Lθ denotes the set {E1θ, ..., Enθ}.

Let L be a finite set of simple expressions. A substitu-
tion θ is called a unifier for L if Lθ is a singleton. A
unifier θ is called a most general unifier (mgu) for L if,
for each unifier σ of L, there exists a substitution γ such
that σ = θγ.
If Q is a goal of the form ?−C1, ..., Ck then Qθ denotes
the goal

?− C1θ, ..., Ckθ,

where k > 0.

A term(atom) is called ground if it does not contain
variables. The Herbrand universe U is the set of ground
terms and the Herbrand base B is the set of ground
atoms. A Herbrand interpretation I is a subset of the
Herbrand base. The value of a closed formula F in
interpretation I is defined as usual. For formulas F
and G, the relation F |= G means that every Herbrand
model of F is a model of G.

We will denote a set of variables of an atomA by V ar(A).
A set of variables of a goal Q of the form ?−C1, ..., Ck.
we will denote by V ar(Q) and define as

V ar(Q) = V ar(C1) ∪ ... ∪ V ar(Ck).

For any program P and not empty goal Q a logical se-
mantics Log(P, Q) is defined as follows:

• If P 6|= Q, then Log(P,Q) = {no}

• If P |= Q and V ar(Q) = ∅, then Log(P,Q) =
{yes}

• If P |= Q and V ar(Q) = {y1, ..., ys}, s ≥ 1, then
Log(P,Q) = {〈t1, ..., ts〉 ∈ Us|P |= Qθ,
θ = {t1/y1, ..., ts/ys}}

where t1, .., ts are terms.
Let P be a logic program and Q a goal. An SLD-tree,
corresponding to P and Q, is a tree satisfying the fol-
lowing:

• Each node of the tree is a (possibly empty) goal

• The root node is Q

• Let ?−C1, ..., Ck.(k ≥ 1) be a node in the tree and
suppose that Cm is the selected atom. Then, for
each input clause A : −B1, ..., Bn such that Cm

and A are unifiable with mgu θ, the node has a
child

?− C1θ, ..., Cm−1θ,B1θ, ..., Bnθ, Cm+1θ, ..., Ckθ.

• Nodes which are the empty goals have no children.

The set of predicate symbols used in logic program P
we will denote as ΠP .
To each program P is corresponded the permitted set
of goals and it is denoted as ∆(P). P1 and P2 programs
are ∆-equivalents1 if ∆(P1) = ∆(P2) and for any goal
Q ∈ ∆(P1), P1 |= Q⇔ P2 |= Q.

1The notion of ∆-equivalence is given in [7].

3. FUNCTIONAL SYMBOL-FREE PRO-
GRAMS

In this section we study FSF programs.
For a FSF program, a goal is permitted if it does not
use functional symbols of arity ≥ 1.

We will describe the algorithm of transformation con-
forming to which any FSF program P transforms to
another program P ′ so that for any goal Q ∈ ∆(P),
Log(P,Q) = Log(P ′, Q) and the SLD-tree, correspond-
ing to P ′ and Q, is finite. Note that transformed pro-
gram P ′ is already not a FSF program.

We will say that atom A precedes atom B and denote
it by A � B, if there exists a substitution θ such that
Aθ = B. It is easy to see that the relation � is transitive
and reflexive.

We will say that atoms A and B are congruent and
denote it by A ≡ B, if A � B and B � A. It is easy
to see that the relation ≡ is an equivalence relation.
Congruent atoms are considered identical.

3.1 Transformation
Definition 1. For a clause S from logic program P

we define set of atoms T (P, S) as follows:
T (P, S) = {Aθ | the substitution θ uses functional and
predicate symbols only from program P},
where S is A : −B1, ..., Bm,m ≥ 0.

Lemma 1. For a clause S from FSF program P

T (P, S) =

l∏
j=1

(c+ j),

where l is a count of the distinct variables in S, and c
is a count of the distinct constants used in program P .

Definition 2. For a logic program P we define set of
atoms T (P) as follows:

T (P) = T (P, S1) ∪ ... ∪ T (P, Sw),

where S1, S2, ..., Sw are the clauses of P.

It is easy to see that

T (P) ≤
w∑

i=1

T (P, Si).

Let us denote sequence of terms t1, ..., tk by t, where
k ≥ 0.

Definition 3 (T2 transformation). Let P be a
FSF program. For program P we construct program P ′

as follows:
For every clause S of the form p(t) : −p1(t1), ..., pn(tn) ∈
P, n ≥ 0, we define 2 clauses

1. Trans(S) is pT (t, s(z)) : −pT1 (t1, z), ..., p
T
n (tn, z),

2. p(x1, ..., xk): −pT (x1, ..., xk, s
v(0)),

where v = T (P), the variables z, x1, ..., xk are distinct,
s is a new functional symbol, pT 6∈ ΠP , k is the arity of
p, and 0 is constant.

As a result of the 1st point of T2 transformation, for
each clause of program P a new clause is defined, which
has the same structure as the original one, but with the
new predicate symbols having arity more by one.
Last parameters of new predicate symbols are intended
to save values of the counters2. This last parameters
are added as constraints.

As a result of 2nd point of T2 transformation, for each
clause of program P a new rule is defined, which initial-
izes the counter of corresponding clause.

3.2 Termination
The following theorem addresses the termination issue,
by showing that the transformed program is terminat-
ing.

Theorem 1 (termination). Let P be a FSF pro-
gram. P ′ is a program obtained from P by T2 trans-
formation. Then, the SLD-tree, corresponding to a pro-
gram P ′ and any goal Q ∈ ∆(P), is finite.

In other words, for all permitted goals the transformed
program is terminating.

3.3 Completeness
Having obtained a terminating program we need to prove
that the logical semantics of the transformed program
coincide with that of the original one.
We have the following result.

Theorem 2 (completeness). Let P be a FSF pro-
gram. P ′ is a program obtained from P by T2 transfor-
mation. Then, for any goal Q ∈ ∆(P), Log(P ′, Q) =
Log(P,Q).

In other words, the transformed program and the orig-
inal one are ∆-equivalents.

REFERENCES
[1] D. Pedreschi, S. Ruggieri, Bounded

Nondeterminism of Logic Programs. Proc. of the
International Conference on Logic Programming,
pages 350-364. MIT Pres, 1999.

[2] D. Pedreschi, S. Ruggieri, and J. G. Smaus, Classes
of Terminating Logic Programs, Theory and
Practice of Logic Programming, 2(3): 369-418, 2002.

[3] S. Khachatryan, On the Optimization of
Variable-Free Logic Programs, In Proceedings of
CSIT 2011, pages 50-51. Gitutyun, 2011.

[4] Nigiyan S.A., Khachoyan L.O., K Probleme
∆-ekvivalentnosti Logicheskikh Programm. Dokladi
NAN Armenii, v. 99, 2, p. 99-103, 1999. (in
Russian).

[5] J. W. Lloyd, Foundations of Logic Programming,
Springer-Verlag, 1984.

2By term sm(0) is coded natural number m.

[6] U. Nilsson, J. Maluszski. Logic, Programming, and
PROLOG. John Wiley & Sons, Inc., 2nd edition,
1995.

[7] Nigiyan S. A., Khachoyan L. O., Transformations
of Logic Programs, Programming and Computer
Software, Vol.23, N6, pp. 302-309, 1997.

