
INTERRELATION OF LANGUAGES OF COLORED PETRI NETS, MODIFIED PETRI NETS

AND SOME CLASSES OF FORMAL LANGUAGES.

Goharik Petrosyan

ARMSPU, Yerevan, Armenia

e-mail: petrosyan_gohar@list.ru

ABSTRACT

The article studies the interrelation of languages of

Colored Petri Nets, Modified Petri Nets and some

classes Formal languages. The author constructed the

graph of Colored Petri Net, which generates Context-

free (CF) language

   },,/{ * baCL R   ,

and it may not be modeled by Classical Petri Nets [1].

Comparing the graphs

   },,/{ * baCL R  

modeled by CPN (Colored Petri Net, is shown in fig.1)

and MPN (Modified Petri Net, is shown in fig.2);

taking account of complexities of CP and MP nets (a

number of positions, transitions and arcs) from the

viewpoint of optimization, also the diagram [3, p. 42],

one comes to the conclusion, that it might create the

interrelation among the CPNL, MPNL and some

classes of Formal languages.

Keywords: Petri Nets (PN), Modification Petri Nets

(MPN), Colored Petri Nets (CPN), Context-free

language (CF), Bounded Context-free language (BCF),

Regular Language (R).

1. INTRODUCTION

Petri Nets (PN) is a graphical tool for the formal

description of the flow of activities in complex

systems. With respect to other more popular techniques

of graphical system representation (like block diagrams

or logical trees), PN is particularly suited to represent

logical interactions among parts or activities in a

system in a natural way. PN used for modeling real

systems is sometimes referred to as Condition/Events

nets [1,2].

Definition. Petri Net pair, where

 is the network structure and is the

network condition.

In structure of a -positions, -transitions are finite

sets. are the input and

output functions, respectively, where are all

possible collections (repetitive elements) of .

 is the function of condition, where

 is the set of integers. We determine

(in a known manner) the allowed transitions of Petri

Nets and the transitions from one state to another, as

well the set of reachable states [1,2].

The idea of Modified Petri Nets belongs to the author

[3, 4]. Suggested MPN-s, where the idea of restrained

positions is imported, can model all CF language-

classes. In [3] equivalence –theorem has been proved:

for each CF –Grammar one can construct MPN which

is equivalent to the language generated by CF –

Grammar. An algorithm for constructing a Modified

Petri Net equivalent to a given CF-Grammar described

in detail [4].

Definition. Modified Petri Net is a

 . In structure of a -basic

positions, - restrained positions, -transitions are

finite sets. .

 are the input and output functions,

respectively[4].

Colored Petri Nets (CPN) are considered as modern

extension of Classical Petri Nets which was created by

K. Jensen [5].

Colored Petri Nets (CPN) is a graphical oriented

language for design, specification, simulation and

verification of systems [5,6]. It is in particular well-

suited for systems that consist of a number of processes

which communicate and synchronize. Typical

examples of application areas are communication

protocols, distributed systems, automated production

systems, work flow analysis. The CPN language allows

the model to be represented as a set of modules,

allowing complex nets (and systems) to be represented

in a hierarchical manner.

In the classical or traditional Petri Net tokens do not

differ from each other, we can say that they are

colorless. Unlike Classical Petri Nets in Colored Petri

Nets of a position can contain tokens of arbitrary

complexity, example, lists, etc., that enables modeling

more reliable models.

Definition. The mathematical definition of

Colored Petri Net: CPN is a nine-tuple

),,,,,,,,(IEGCNATPCPN  , where:

1.  is a finite set of non-empty types, also called

color sets. In the associated CPN Tool, these are

described using the language CPN-ML [6]. A token is

a value belonging to a type.

2. P is a finite set of places. In the associated CPN

Tool these are depicted as ovals/circles.

3. T is a finite set of transitions. In the associated

CPN Tool these are depicted as rectangles.

4. A is a finite set of arcs. In the associated CPN
Tool these are depicted as directed edges. The sets of

places, transitions, and arcs are pairwise disjoint, that is

 ATAPTP .

5. N is a node function. It is defined from A into

PTTP  . In the associated CPN Tool this

depicts the source and sink of the directed edge.

6. C is a colour-function. PC : .

7. G is a guard function. It is defined from T into

expressions such that:

])))(((&))(([:  tGVarTypeBtGTypeTt

8. E is an arc expression function. It is defined from

A into expressions such that:

])))(((&)(

))(([:





aEVarTypepC

aETypeAa

MS
,

where p is the place of)(AN and MSpC)(denotes

the multi-set type over the base type)(pC .

9. I is an initialization function. It is defined from P

into closed expressions so that:

].)())(([: MSpCpITypePp 

The distribution of tokens, called marking, in the

places of a CPN determines the state of a system being

modeled.

The dynamic behavior of a CPN is described in terms

of the firing of transitions. The firing of a transition

takes the system from one state to another. A transition

is enabled if the associated arc expressions of all

incoming arcs can be evaluated to a multi-set,

compatible with the current tokens in their respective

input places, and its guard is satisfied.

Unlike Regular languages, which are the languages of

Petri Nets, there are Context-free languages, which are

not languages of Petri Nets. Such examples of

Context-freе language we are noted the following:

 },,/{ * baR  [1,7].

This fact illustrates the limitation of Petri Net as a tool,

that generates the languages. In Petri Nets is not

possible to remember arbitrarily long sequence of

arbitrary characters. In Petri Nets the sequence of

limited length can be remembered (this is also possible

in finite automata) [1]. However, Petri Nets do not

have the "capacity of pushdown memory" which is

necessary for the generation of Context-free (CF)

languages. The interrelation of languages of Petri Nets

with other classes of languages investigated Ven [1].

An algorithm for constructing a Мodified Petri Net

equivalent to a given CF-Grammar.

1. Given CF-Grammar convert the Binary normal form

(Chomsk normal form) [7]. Denote the resulting a

grammar by , where is the set of non-

terminal symbols, is the set of terminal symbols, is

the set of rules, is the initial symbol.

2. Construct a MPN follows:

i) If the rule from has the form , where

 , then build the following fragment of Petri

Net:

Let us write the fragment with the the extended input

and output functions: ,

where is the set of basic positions.

 . , where is the set of restrained

positions. .

ii) If the rule from has the form , where ,

then build the following fragment of Petri Net:

 .

iii) If the rule from has the form , where

 , then build the following fragment of Petri Net:

 .

 B

C






A

 A a

 S 

According to the above algorithm may be construct

MPN equivalent to a given CF-grammar(fig. 2).

 Fig. 1. Modeling  },,/{ * baR  CF

language by Colored Petri Net.

In fig.2 it is constructed MPN modeled

 },,/{ * baR  language, compared

with fig.1 CPN it has complicated structure.

The fig.1 shows a Colored Petri Net,

which generates the  },,/{ * baR 
language that is, Colored Petri Net is a more

powerful tool than the Classical Petri Net. To
understand types of data which are used in a figure, it

is necessary to give a declaration.

One of the output ranges of

 },,/{ * baR 

language is following:

 or . Fig.1 models the first range,

where is a integer (). If transition-names are

changed into each other, it will be generated by the

second one. To understand types of data which are

used in a figure, it is necessary to give a declaration. In

the figure introduced a position of count of type and it

has an initial value . In the figure, a transition marked

with the symbol a that is generating symbol a, and a

transition marked with the symbol b, which generates

the symbol b. In the figure position of count of type

remembers the number of transitions are fired and

regulates.

In fact, when the marked with a transition is fired,

generates the symbol a, if the marked with b transition

is fired, generates the symbol b. To the transitions are

attached logical expressions (guards): ,1 nct

)1( nct , if the logical expression is true, then the

transition is allowed, and if false, then the transition is

not allowed.

Let n =ct , then is fired marked with a transition,

generates the a symbol and 1-n=ct , then is fired

marked with b transition, are generated by ab

symbols, in this case position of count of type value of

token is equal to : 1n=ct  , and twice is fired

marked with a transition, are generated by abaa

symbols, when the value of position of count of type is

equal to 1n  : 1n=ct  , then is fired marked

with b transition, are generated by abaab symbols,

1n=ct  , and is fired marked with a transition are

generated by abaaba symbols, in this case position of

count of type value of token is equal to , the network

comes to the initial state, as necessary, can be repeated

the cycle.

Conclusion.

Due to its important properties CPN, are more

comfortable for system-modeling mentioned above.

Taking account of the fact that all CF languages are

modeled by both MPN and CPN, but CPN are more

comfortable for the solution of mentioned problems
from the viewpoint of optimization of net-complexity,

we can represent the interrelation among the CPNL,

MPNL and some classes of Formal languages by

means of following diagrams (fig.3).

 Fig. 2. Modeling  },,/{ * baR  CF

language by Modified Petri Net.

 ct+2 ct

 ct-1
 ct>n-1

count

n a

b

 ct=n-1

 ct

Declaration

Color count=int;

Var ct:count;

43

<sb>

8

b
21

<Sa>

a

a

S
7

3 4

5 6

Fig. 3. Interrelation of Languages of Colored

Petri Nets, Modified Petri Nets and some classes
Formal Languages (Modified Petri Nets

Language (MPNL), Colored Petri Nets Language

(CPNL), Context-free Language (CF), Bounded

Context-free Language (BCF), Regular Language

(R)).

REFERENCES

[1] Peterson, James Lyle (1981).
Petri Net Theory and the Modeling of Systems.

Prentice Hall. ISBN 0-13-661983-5.

[2] Tadao Murata. “Petri nets: Properties, Analysis and

Applications.” Proc. of the IEEE, 77(4), 1989.

[3] Г. Р. Петросян, Вз имосвязь языков

модифициров нных сетей Петри с некоторыми

кл сс ми форм льных языков, Математические

вопросы кибернетики и вычислительной техники,

XXV, стр. 39-44, Ерев н 2006.

[4] Г. Р. Петросян, Модифициров нные сети Петри,

опис ние поведения с помощью форм льных

языков, Математические вопросы кибернетики и

вычислительной техники, XXVI, стр. 48-53, Ерев н

2006.

[5] Jensen K. (1992). Coloured Petri Nets: Basic

Concepts, Analysis Methods and Practical Use.

Springer – Verlag, Berlin, Germany.
[6] Jensen K. Coloured Petri Nets: A High – level

Language for System Design and Analysis. In: G.

Rozenberg (ed.): Advances in Petri Nets 1990, Lecture

Notes in Computer Science, v. 483, Springer – Verlag

1991, 342 – 416.

[7] Aho Alfred V., Ullman Jeffrey D. Theory of

Parsing, Translation&Compiling. Prentice Hall ,

January 1, v. 1,2, 1973.

CPNL

 MPNL

L

