
Ontology Structure and Processing in the Test Generation
System

Gushchanskiy, Dmitry
Saint-Petersburg State University

Saint-Petersburg, Russian Federation

e-mail: dmitry.gushchanskiy@gmail.com

ABSTRACT
Usage of tests is a popular way of gaining information
about learner’s knowledge, and test generation systems
provide a possible method of facilitation of test process.
There are different approaches to such systems, and one
of them suggests the usage of special representations
of knowledge and describing the systems as knowledge
handlers or the whole test process as ontology-based.
In this work a possible way of representing a test gen-
eration system as an ontology is described. Methods of
handling of such structure are described with a focus on
question selection and test score. The proposed ap-
proach uses generic ontological characteristics, therefore
it is domain-independent. It provides a great variability
of test variants and knowledge reuse between test cases.

Keywords
Test generation, ontology, question selection, test scor-
ing

1. INTRODUCTION
Gaining information about learners knowledge is cru-
cial for educational process of any kind. Today tests
become the most popular method of knowledge check-
ing. A testing approach suits many different domains on
different levels of observation. Tests are applicable for
both classic learning and e-learning. The test size and
questions types can be changed to match a goal of
testing. Thereby, it's possible to use it on different parts
of education: checking residual knowledge, intermediate
progress or acting like final exam.
A wide spreading of tests makes them a noticeable tar-
get for automation, which involves every side of using
tests: test creation (both questions and test structure),
test process and evaluation of results. One of the ap-
proaches is to use ontologies as a way to describe en-
tities in testing and existing relations between them. The
ontology allows formalizing their description and
standardizing methods of testing parts interaction thus
making universal approach for test processing possible.
In this paper a method of representing ontology of test
knowledge is introduced. The method offers a domain-
independent, scalable on different levels way of knowl-
edge representation for test systems. It supports both
question generation and using predefined questions, thus
making possible to use previously gained knowledge of
domain tests. A short answer question type is used as a
base type of question because it suits different types of
knowledge checking [1] and some another question types
can be represented as short answer questions. Meth-

ods of test generation and test answers scoring for this
knowledge representation are also presented.

2. RELATED WORK
In [1] the idea of using ontology as a core of test gen-
eration system is described. The main characteristics of
ontology-based test generation systems are shown.
Moreover, the authors discussed an impact of approaches
of scaling and students knowledge level on selection of
scoring schemes, question types and test structure.
The previously mentioned work is developed in [2], where
its ideas are extended and the full test generation system
is described both as a part of a learning system and a
sepa- rate system. The current work proposes a different
way of ontologies organization with another view of
domain-independent part of knowledge. The approach
suggests unification of different domains knowledge in a
single knowledge base for better usage of cross-domain
relations. The domain knowledge base excludes any
knowledge about learners and learning process.
The authors of [3] propose a method of generation of
text-based multiple choice questions using ontologies in
OWL format as the base. Usage of the widespread
method of knowledge representation assists authors in
simplification of ontology processing and allows the test
generation system to use widely expressed relationships
and properties of ontology elements for producing dis-
tractors for multiple choice questions. The domain rep-
resentation described in the current paper relies more on
network architecture than on document-oriented ap-
proach. Moreover, the test generation system is using a
short answer open question instead of multiple choice
questions proposed in [3].

3. SYSTEM DESCRIPTION
3.1 Knowledge Representation
A heterogeneous semantic network G = (V, A) is chosen
as a core structure for knowledge representation. V is a
set of nodes, an item or a concept of the domain is
associated for each. A is a set of typed arcs. They are
ordered pairs of nodes with a relation type associated. It's
possible to have a pair of nodes connected by several arcs
with different types.
Furthermore, for additional description each node has a
set of parameters. These parameters contain special
information about nodes place in the domain and help to
process knowledge base during test generation and
answers evaluation:
• Node class t. Classes generalize items and concepts in
nodes and mark nodes with something in common. They
create a node classification, which is applied in test
generation.
• S — natural language processing related information
about the node for correct question text generation and

users answers handling. This information supports com-
munication between the user and the system in natural
language. For instance, the prototype of test generation
system uses a list of synonyms as a parameter.
Moreover, for the sake of the ability to use previously
created tasks and questions in tests and to express spe-
cial tasks related specifically to the item each node has a
set of predefined questions. Each question is repre-
sented as a number of parameters:
• tq — a text of the question;
• A fuzzy set a which stores possible variants of an an-
swer to the question and a membership function acting
like a measure of accuracy of these variants: 1 means its
the most fitting answer and 0 means it's wrong. Only the
support set is needed for proper storing.
• c — a numerical characteristic of complexity of the
question relative to other questions related to the node. c
∈ [0; 1], where 1 means the hardest question. It is used for
answer scoring.
• w¯ — a numerical characteristic of significance of the
knowledge behind the question relative to other ones con-
nected with the node. w¯ ∈ [0; 1], where 1 means the
knowledge has an absolute value. It is used for answer
scoring, too.
• T — a list of tags for questions selection for test. For
instance, a tag may mean that this question is suitable
for entering exams or for finals, or that the question
should be asked in certain courses.
Moreover, it's possible to store templates of domain-
related tasks in the question set. In this case, instead of
the question text a task template is stored and the fuzzy
set with answer information and characteristic of
complexity are replaced by descriptions of how to check
and evaluate the answer and how to value complexity of
the generated task. Description of such templates re-
lates to domains and details of the system implementing
and so it is omitted here.
The structure has advantages. It provides the domain
independent way to store knowledge for test generation.
Knowledge can be expanded by adding new nodes that
describe domain details or even new domains. Thus, it is
possible to keep interconnected knowledge about several
domains in one place and to construct both domain-
centered and inter-domain tests and only an accurate
placing of tags is needed. The most of the information
about specific tests is stored as a list of parameters:
• Name of the test N.
• Number of questions nq .
• (A, v0) — a link for a subnet of the knowledge seman-
tic network which is going to be used in the test with
allocation of a central node. The central node v0 is the
node of the knowledge semantic network representing
the essential idea of test theme. It serves as an initial
point during test generation.
• Wn — a list of numerical characteristics of the im-
portance of the nodes of the selected parts of the net-
work. The importance of node wn may vary from test to
test therefore parameters aren't stored in the knowledge
base. The characteristics are also applied in test
generation.wn ∈ [0; 1], where 0 means that there will be
no questions about this item, but it can participate in
question generation for another nodes; 1 means that this
item is essential for the test.
• The same list We of parameters of importance for the
arcs we.
• The inportance bottom limit L.
• Qr — a list of question generation and answer evalu-
ation rules. They will be discussed further.
• A list of tags TN suggested for the test. The test
generation system should use only previously described

questions with listed tags.
• S — a scoring scheme for test results. The scheme de-
scribes how to interpret values which are received during
answer checking.
Question generation rules are the core part of a test case.
They determine how questions are created and
processed, how their complexity and importance are cal-
culated. As ontologies incorporate a reasoning mecha-
nism to derive facts from explicitly refined knowledge [4],
a generated question as well as a result of its answer
checking may be considered as a reasoned fact. The
choice of the reasoning method and its implementation
strongly affects rules structure and capabilities. In the
test prototype a rule-based inference engine is applied. It
uses nodes and arcs as set of axioms thereby processing
test question generation as proof of a theorem. Therefore
an item of Qr may be considered as a tuple (tx, e, wr , wc),
where tx is a rule of generation of a question text, e — a
rule of answer evaluation and wr , cr — rules of
evaluation of question importance and complexity,
correspondingly. An example of rules is shown in
Implementation part of the paper.

3.2 Question Selection
The base mechanic of test generation system is to choose
a question from the network, ask the question and re-
ceive an answer, check answer, repeat the process sev-
eral times and finally get the score for a student. The
process of question choice can be divided into two parts:
selection of the node to ask about and selection or gen-
eration of a question about the node.
The node selection process is similar to applications of
Monte-Carlo methods to Bayesian networks [5] in be-
havior:

Step 1. Start in the v0.

Step 2. Check the network availability to ask ques-
tions: suppose nc — current number of asked ques-

tions, if nc = nq or
∑

wn∈Wn

wn = 0, end the test.

Step 3. Check node availability: if wn 6= 0 then try to
get access to the node in the next step, else go to
Step 4.

Step 4. Nodes access: we acts like the probability to
be chosen (i.e. wn = 1 means it will be chosen ab-
solutely), and a random generated value rn ∈ [0; 1]
is compared with it. If rn ≤ wn, pick the node and
end the procedure, in another case continue to the
next step.

Step 5. Get a list E of all arcs which have the current

node as a tail. Suppose W̄e =
∑
e∈E

we(e) Construct

a categorical distribution with a probability mass
function f(x), f(x = ei) = we(ei)/W̄e.

Step 6. Apply a random generated value rn ∈ [0; 1] to
the distribution thus receive one of the arcs.

Step 7. Pick the head of the chosen arc and go to the
Step 3.

The importance bottom limit L is an important part
of node selection handling. After several reductions the
importance of a node may become low, but still nonzero.
The node has a very small chance to be selected and is

used only as intermediate connection in the network.
Therefore an importance bottom limit is introduced in
the system. If the importance of a node is smaller than
the limit, it becomes zero thus excluding the most of the
knowledge about the node except its name and type.
Such reduction helps to better use test cases and allows
the system to use quit condition from the node selection
procedure.
The guarantee of variety of selected nodes is crucial for
the test generation system. To provide it the impor-
tance parameter of the node will decrease before jump-
ing to the next question generation. In general, reduc-
tion of the importance should be done by a contraction
on [0; 1] with Euclidean metric with zero as a fixed point.
In the current work a function z(x) = x/β is selected.
The parameter β is selected by analysis of the network
structure and the number of questions. The main cri-
terion of selection is to make the sum of importance
parameters of all nodes in the network close to 0 by the
end of test. This idea produces the formula for β:

β = e

∑
wn∈Wn,wn>0

lnwn−α lnL

nq−α , (1)

where α is the number of participating nodes for which it
is possible to receive at least one question.
Next step is to choose a question for the node. The fil-
tering by tags selects all appropriate previously created
questions and task templates from the node. Addition-
ally the system selects suitable for node task generation
rules from the test case. During rules selections the sys-
tem receives their importance parameters. They could be
preliminary added to the rules or be computed on the
run. Then, like in the node selection case, a categorical
distribution is constructed and one question option is
chosen. The question is marked as used. The text of the
task is generated if needed and presented to a user who
gives an answer to it. Since the test generation system
has a generality, the users answer is a string and it's
needed to be checked.

3.3 Answer Checking
Short answer evaluation is a complex study which seizes
several scientific areas with different methods of evalu-
ation [6]. In this work a simple comparison with tem-
plates is used for predefined questions. It requires a man-
ual explanation of answers, but guarantee stable and
correct work of the system. Therefore, the suitable op-
tions are sought in the fuzzy set attached to the ques-
tion. The best result is returned as an answer evaluation.
In the case the answer isn't in the set, 0 is returned. If the
answer is for the question generated by the test case
rules, the rule e from its tuple is applied and the numer-
ical score in range [0; 1] is received.

3.4 Test Scoring
For each answered question four parameters received:
answer checking result a, question importance w̄, ques-
tion complexity c and node importance wn. Every pa-
rameter is in range [0; 1]. The key idea is to create a
function F (a, w̄, c, wn) which can evaluate the answer
investment in the total result. F has to satisfy a list of
requirements:

1. Completely wrong answer can't receive a positive
result:

F (0, w̄, c, wn) = 0 ∀w̄, c, wn. (2)

2. A right answer for an elementary question still
should be rewarded:

F (a, w̄, 0, wn) 6= 0 ∀w̄, wn; a > 0. (3)

3. The best result can be achieved only with the top
conditions:

F (1, 1, 1, 1) = 1. (4)

4. More precise answer is better:

∀a1, a2; a1 < a2 : F (a1, w̄, c, wn) <
< F (a2, w̄, c, wn) ∀w̄, c, wn.

(5)

5. More difficult question is more rewarded:

∀c1, c2; c1 < c2 : F (a, w̄, c1, wn) <
< F (a, w̄, c2, wn) ∀a, w̄, wn.

(6)

6. More important question is more rewarded

∀w̄1, w̄2; w̄1 < w̄2 : F (a, w̄1, c, wn) <
< F (a, w̄2, c, wn) ∀a, c, wn.

(7)

7. A question for more important item is more re-
warded:

∀w̄n1, w̄n2; w̄n1 < w̄n2 : F (a, w̄, c, wn1) <
< F (a, w̄, c, wn2) ∀a, w̄, c. (8)

An infinite set of functions satisfies the requirements, for
instance, a family of functions

F (a, w̄, c, wn) = wn1
n · an2 · ew̄

n3 · ec
n4
,

n1, n2, n3, n4 > 0.
(9)

is suitable for scoring.
Then F (a, w¯, c, wn) is chosen it is possible to find a total
score for the test. Let St be a list tuples (a, w¯, c, wn) from
each answer evaluation. Then a total score T s, T sin[0; 1]
may be found as

Ts =

∑
(a,w̄,c,wn)∈St

F (a, w̄, c, wn)∑
(a,w̄,c,wn)∈St

F (1, w̄, c, wn)
, (10)

and interpreted according to the test description. The
current approach has an important disadvantage which
can restrict the test evaluation. For instance, let the do-
main have an item with a question which is considered as
quiet simple, but crucial for the whole test theme. It’s
natural to suppose that the right answer should not be
high evaluated due to simplicity, however, an incorrect
answer should greatly affect total score, thus impeach
the test results.
As a possible solution the usage of additional score is sug-
gested. In addition to F (a, w¯, c, wn) a penalty function
K(a, w¯, c, wn) is added. The total score formula is mod-
ified as follows:

Ts =

∑
(a,w̄,c,wn)∈St

F (a, w̄, c, wn)∑
(a,w̄,c,wn)∈St

(F (1, w̄, c, wn) +K(a, w̄, c, wn))
.

(11)
K(a, w̄, c, wn) has to satisfy some requirements:

1. A penalty may have no upper bound:

K(a, w̄, c, wn) ≥ 0 ∀a, w̄, c, wn. (12)

2. An absolutely correct asnwer has no penalty:

K(1, w̄, c, wn) = 0 ∀w̄, c, wn. (13)

3. More precise answer has a lesser penalty:

∀a1, a2; a1 < a2 : K(a1, w̄, c, wn) ≥
≥ K(a2, w̄, c, wn) ∀w̄, c, wn.

(14)

4. More difficult question has a lesser penalty:

∀c1, c2; c1 < c2 : K(a, w̄, c1, wn) ≥
≥ K(a, w̄, c2, wn) ∀a, w̄, wn.

(15)

5. More important question is more fined:

∀w̄1, w̄2; w̄1 < w̄2 : K(a, w̄1, c, wn) ≤
≤ K(a, w̄2, c, wn) ∀a, c, wn.

(16)

6. A question for more important item is more fined:

∀w̄n1, w̄n2; w̄n1 < w̄n2 :
K(a, w̄, c, wn1) ≤

≤ K(a, w̄, c, wn2) ∀a, w̄, c.
(17)

As for F (a, w̄, c, wn), an infinite set of functions satisfies
the requirements. The function family:

K(a, w̄, c, wn) = wn1
n · (1− a)n2 ·

·w̄n3 · (1− c)n4 ,
n1, n2, n3, n4 > 0

(18)

is an example of such functions.

4. IMPLEMENTATION
A prototype of the test generation system is imple-
mented using Python with Pyke [7] as a knowledge en-
gine for question generation. Pyke natively supports
multiple rule bases with forward-chaining and backward-
chaining rules and code snippets within rules thus al-
lows the system to express complex relationships be-
tween items in different domains.
As a base for test generation the knowledge base about
geography of Ireland is used. The knowledge base is a
semantic network with 74 nodes and 127 vertices, 13
nodes have predefined questions. The test case has 15
questions, 14 rules of question generation in Qr and a
score scheme described above with

F (a, w̄, c, wn) = a · wn · ew̄−1 · e
√
c−1,

K(a, w̄, c, wn) = wn · (1− a) · w̄ · (1− c)2.
(19)

Question generation rules use similarities in the network
structure and allow for a variety of options of the same
type of questions. For example, such diversity provides
more than a thousand different test variants for a test
with 15 questions, and each of the variants has ques-
tions from different parts of the domain.
Each element of Qr is described as follows. (tx, e, wr , wc)
tx is a pair of text generation template and a rule for an
applicability the question to a node and receiving
parameters from the node. e is a rule for answer check-
ing, which substitutes answer in the Pyke rule and tries
to resolve it. wr is similar to the node significance and wc

= 1−wr . For example, a question: ”What county is Ennis
situated in?” is generated by the rule:
situated in($what, $where), $type = $where.type
and a text template:
What $type is $what situated in?
For answer checking a rule
situated in($what, $x), $x.type = $type is applied. It gives
1 as a score if the rule application is finished cor- rectly
and 0 otherwise.

5. CONCLUSION AND FURTHER RE-
SEARCH

The ontology representation of a test generation sys- tem
was presented. The representation allows storage of
domain independent knowledge in the same connected
network with applying different test cases, where each of
them may use different parts of the network and have
different test-oriented purposes. Some methods of han-
dling such representation were presented. The method of
question selection provides the question variability and
coverage of a test case. The method of complex answer
scoring was also described. It showed an appropriate
behavior during the test case runs. The test generation
system prototype was created. It shows the ability to
diversify test varieties of the test case. Rule-based
question generation creates a variability of tests, each
test is quite unique.
The research suggests many ways of its development,
but some options are considered. Firstly, the test scor-
ing method should be compared with other methods in
larger test case runs. Different kinds of functions should
be examined during the tests. Secondly, the method of
question selection has a lack of user feedback, which can
vary test even more. Possible ways to add a feedback in
the method behavior should be considered. Finally,
effective knowledge storage and processing should be
examined. In the case of multi-domain knowledge the
number of items in the network can be increased signifi-
cantly and effective knowledge handling becomes crucial
for the system.

REFERENCES
[1] Soldatova, Larisa, Mizoguchi, Riichiro, ”Ontology

of test”, Proc. Computers and Advanced Technology
in Education, pp. 173–180, 2003.

[2] Soldatova, Larisa, Mizoguchi, Riichiro, ”An
Ontology-Based Test Generation System” Semantic
Web Technologies for E-Learning, pp. 96–110, 2009.

[3] Papasalouros, Andreas, Kotis, Konstantinos,
Konstantinos, Kanaris, ”Automatic generation of
tests from domain and multimedia ontologies”,
ıInteractive Learning Environments 19, no. 1 ,pp.
5–23, 2011.

[4] McGuinness, Debora L., Patel-Schneider, Peter F.,
”From Description Logic Provers to Knowledge
Representation Systems”, The description logic
handbook: theory, implementation, and applications,
pp.271–283, 2003.

[5] Heckerman, David, ”A Tutorial on Learning with
Bayesian Networks”, Innovations in Bayesian
Networks. Studies in Computational Intelligence
Volume 156, pp. 33–82, 2008.

[6] Ziai, Ramon, Ott, Niels, Meures, Detmar, ”Short
Answer Assessment: Establishing Links Between
Research Strands”, The 7th Workshop on the
Innovative Use of NLP for Building Educational
Applications, pp. 190–200, 2012.

[7] Frederiksen, Bruce, ”Python Knowledge Engine”,
http://pyke.sourceforge.net.

