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ABSTRACT 
This paper describes the two-stage compilation system based 
on LLVM compiler infrastructure and the performance 
optimizations made possible by this deployment technique. 
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1. INTRODUCTION
Deploying applications written in general-purpose languages 
(C/C++-like) using native binary formats yields several 
difficulties. First, dozens of versions are required so that the 
target architecture specifics can be fully taken into account, 
which can result in significant performance increase. 
Second, profile-guided optimizations using the profile 
specific to the given application user are impossible. 

The paper presents the two-stage compilation technique that 
allows distributing such programs in LLVM [1] bitcode. 
LLVM bitcode can be made portable within the same 
architecture family or with some limitations also within the 
architectures that have the same basic types’ size. 

The two-stage compilation workflow [2] is organized as 
follows. On the first stage, we generate the setup package 
with the compiled bit-code and the auto-generated scripts 
that allow its code generation to the native code on the target 
device. The setup package is built through utilizing a 
configure script called configure-proxy, which automatically 
generates the build script. The original compilers are also 
invoked using similarly organized wrappers. Also, we have 
made the changes to the compiler frontend and the linker 
allowing to record dependencies between separate program 
modules.  

The setup package construction is finalized after the program 
build and installation. All recorded dependencies (built 
libraries and executables in the LLVM bitcode format, files 
that were created during program installation) are included in 
the package together with the generated scripts for the target 
device.  

We support invoking link-time optimizations to improve the 
generated code performance. More generally, it is important 
to optimize code on the first stage as much as possible to 
lower the burden on the second stage optimizations, which 
might happen on the mobile target device. On the second 
stage, we support two installation choices – either static code  
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generation into the native target code or dynamic 
compilation with profile information generated by the user. 
Both static and dynamic compilation paths can fully 
optimize target-specific knowledge while optimizing (e.g. 
code generation, auto vectorization, software pipelining and 
scheduling, prefetching, etc.). The implemented tools allow 
the programmers to support static and dynamic optimization 
between program bitcode and other modules fully 
automatically (which may be linked either statically or 
dynamically and may also be distributed either as native 
code or bitcode).  

2. LLVM BITCODE APPLICATION
SERVER 
When using two-stage compilation workflow for mobile 
devices, one must be careful to select the proper 
optimizations to be executed on the target device, as it is 
usually limited both in available performance and memory. 
It is desirable to remove the optimization burden from the 
target by utilizing a separate cloud application server (known 
as App Store), which can perform target-specific 
optimization and code generation for each user mobile 
device separately and transparently to the user, given that the 
applications are stored in the setup package format with 
LLVM bitcode described above. 

To perform profile-specific optimizations in the cloud, it is 
required that the target device should occasionally send the 
profile information to the cloud, so that the application 
server can utilize this information and distribute the updated 
version of the application back to the user. Different 
strategies of handling profile-specific information are 
possible. The simplest way will be to unify all user profiles, 
which lowers the resources required for profile-based 
optimizations but delivers an average-performing application 
to every user. Other strategy could be to support saving 
several sets of profile information corresponding to different 
classes of application use cases, so that on receiving the new 
profile information the application server could classify it as 
belonging to the known class and then deliver the 
correspondingly optimizing application, or otherwise 
to create a new profile information class if the new data 
is substantially different from existing ones. 

Storing applications in LLVM bitcode format in the cloud 
application server calls for other use cases, such as automatic 
security vulnerability checks using static analysis tools 
similar to Svace[3], or implementing obfuscation techniques 
[4] to create unique application versions for every user, 
which will make creating universal security exploits 
substantially harder.  



3. TWO-STAGE TOOLCHAIN 
PERFORMANCE OPTIMIZATIONS 
In this section we sketch the most important optimizations 
that were developed for the two-stage compilation toolchain. 
The optimizations were tested on ARM devices on a number 
of benchmarks and packages, including SPEC CPU 2000, 
Coremark, SQLite, CLucene, Cray and Expedite. 

3.1. Speculative Devirtualization 
Devirtualization [5] is an analysis technique that allows to 
determine the possible set of targets for a function pointer 
call. It is important for object-oriented languages like C++ 
where any virtual method call results in a function pointer 
call. Devirtualization allows either to replace an indirect call 
with a direct one, if there is only one possible target, or 
to speculatively choose one of the possible variants based 
on the generated runtime check. 

We have implemented a speculative devirtualization 
approach based on comparing function signatures, type 
hierarchy graph analysis (also known as inheritance graph), 
and static analysis of possible types for the given function 
pointer. When we determine several possible candidates, we 
generate a single runtime check for the hottest version for its 
speculative devirtualization and do not devirtualize the 
remaining cold variants. 

The LLVM bitcode does not contain the high-level type 
information required for devirtualization, so that we have 
implemented the type hierarchy analysis in the Clang 
frontend with saving its results in the LLVM bitcode 
metadata. On our benchmarks we have received ~3% 
performance increase with just 1% code size increase. When 
manually assuming closed world application for CLucene, 
we have received 10% performance improvement. The 
implementation also passes devirtualization tests of the GCC 
[6] compiler. We are working on properly recognizing all 
variants of external functions to avoid their too aggressive 
devirtualization and on improving static type analysis 
precision. 

3.2. Array Prefetching in Loops 
The array prefetching optimization inserts target-dependent 
prefetching commands for optimizing cache utilization when 
processing array data in loops. The prefetching commands 
should be executed well in advance so that the required data 
would be loaded in cache in time. This requires the 
knowledge of the number of commands executed between 
the prefetching command and the data usage. As we have 
implemented this optimization over the LLVM bitcode, 
which is not machine-specific, we use heuristic estimation of 
the number of executed machine commands for every 
bitcode instruction (e.g. for calls the number is dependent on 
the number of arguments, for some instructions there is no 
machine commands generated, etc.).  

We also need to estimate the number of loop iterations that 
we need to prefetch data for. This number can be estimated 
as a division of prefetching delay commands number to the 
number of machine commands in a single loop iteration. For 
example, for ARM Cortex-A9 about 200 commands are 
executed before the data being prefetched gets loaded to the 
cache [7]. The number of loop iterations are estimated either 
through static analysis or from the program profile when it is 
available.  

We unroll loops to avoid prefetching data too often 
(the data which is already in the cache does not need 
prefetching). The unroll factor is determined so that the data 
required for the single iteration of the unrolled loop will 
occupy one cache line. For example, the cache line size on 
ARM Cortex-A9 is 32 bytes, and if one loop iteration loads 
just 4 bytes, we need to unroll the loop 8 times.  

The performance increase because of prefetching on SPEC 
CPU 2000 is ~0.9%, the increase for SQLite, Expedite, Cray 
and Coremark is ~0.5%-5%, averaging ~2.5%. 

3.3. Function Inlining 
We have improved the existing LLVM function inlining 
based on the GCC inlining implementation. We were mostly 
interested in the profile information usage for inlining. The 
decision on whether to inline a callee function is based on 
the relative frequency of function calls, their absolute 
number, and the caller function growth estimation done in 
target-independent manner and taking into account possible 
simple optimizations enabled by inlining.  

We estimate function weight as follows: 

FunctionWeight = NumofInstructions × 
InstructionPenalty – NumArguments × 
AllocaPenalty – NumofConstInstruction × 
ConstantPenalty,  

where InstructionPenalty=2 is the instruction 
cost, AllocaPenalty=2 is the local 
variable cost, ConstantPenalty=2 is the 
constant value cost. The function weight with taking 
profile information into account is calculated as 
follows: 
NewWeight= NumCallProfileInfo/FunctionWeight  

After function weight calculation we sort functions by 
increasing weight and inline them until the total weight 
exceeds the given threshold. The performance increase for 
SQLite, Expedite, Cray, and Coremark benchmarks is ~2%.  

3.3. Function Outlining 
The frequent pattern for writing functions is the function 
consisting of two parts: a relatively small hot part (e.g., a 
quick check for hot data and resulting fast calculations) and a 
large cold part (more expensive calculation when the data is 
absent or corrupt)[8]. It is desirable to outline the hot 
function part in a separate function, which then may be 
separately optimized (e.g. inlined), and the cold part may be 
placed in the separate executable section so that it does not 
interfere with the hot program parts. 

First, we determine hot functions based on the k-means 
clusterization algorithm. We support three classes – hot, 
medium, and cold functions. For hot functions, we in turn 
determine cold control flow edges (relative to the other edge 
of the single conditional jump) and then we select the control 
flow region that can be executed only by transferring flow 
over cold edges (we select basic blocks that are dominated 
by the cold edge target blocks)[8][9]. 

The performance increase on SQLite, Expedite, Cray, and 
Coremark benchmarks is ~0.8%, and we get ~3% increase 
when combining this technique with function inlining. The 
code size increase is ~1-7% depending on the application.  



3.3. Determining Dynamic Optimization 
Level 
It is widely known that during dynamic optimization (JIT) 
only the hottest program parts should be heavily optimized, 
and the rest can be optimized only slightly as their 
performance does not affect significantly the total program 
performance. JIT compilers often utilize heuristic 
approaches to find out the proper optimization level for the 
given function [10],[11]. 

When testing our two-stage compilation approach on the 
target mobile ARM-based devices, we have implemented 
three variants of optimization levels like below: 

• Minimal: no optimization (level zero) for cold functions
and level two (so called standard optimizations) for hot
functions;

• Medium: light optimizations (level one) for cold functions
and aggressive optimizations (level three) for hot
functions;

• Maximum: level two optimizations for cold functions and
level three optimizations for hot functions.

When testing on SQLite benchmark, we have found that the 
minimal level saves up to 90% compile time with the 
performance similar to the standard level two optimizations. 
For medium level, we save 2-5% compile time with 
the performance increase of 1-3% compared with the 
level three optimizations. The maximum level produces 
performance increase of 3-4% when compared with 
the level three optimizations and saves 1-3% compile 
time. 

4. CONCLUSION
The paper describes the two-stage compilation toolchain 
based on LLVM bitcode, which allows distributing 
applications in bitcode and optimizing them in the cloud 
application server with fully taking into account target-
specific hardware features and user-specific profile 
information. Deploying application through the cloud server 
allows checking their bitcode form for security 
vulnerabilities and other defects. The toolchain is also 
capable in operating directly on the target device supporting 
either static code generation or just-in-time optimizations. 

A number of profile-directed optimizations were 
implemented in the toolchain, providing performance 
increases between 1% and 7-10% depending on the 
application. The most beneficial optimizations include 
speculative devirtualization and function inlining/outlining. 
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