
Performance optimizations in an LLVM-based
cloud application store1

Victor Ivannikov
ISP RAS

Moscow, Russia
e-mail: ivan@ispras.ru

Shamil Kurmangaleev
ISP RAS

Moscow, Russia
e-mail: kursh@ispras.ru

Andrey Belevantsev
ISP RAS

Moscow, Russia
e-mail: abel@ispras.ru

Arutyun Avetisyan
ISP RAS

Moscow, Russia
e-mail: arut@ispras.ru

ABSTRACT
This paper describes the two-stage compilation system based
on LLVM compiler infrastructure and the performance
optimizations made possible by this deployment technique.

Keywords
LLVM, compilation, optimizations, devirtualization, profile
information.

1. INTRODUCTION
Deploying applications written in general-purpose languages
(C/C++-like) using native binary formats yields several
difficulties. First, dozens of versions are required so that the
target architecture specifics can be fully taken into account,
which can result in significant performance increase.
Second, profile-guided optimizations using the profile
specific to the given application user are impossible.

The paper presents the two-stage compilation technique that
allows distributing such programs in LLVM [1] bitcode.
LLVM bitcode can be made portable within the same
architecture family or with some limitations also within the
architectures that have the same basic types’ size.

The two-stage compilation workflow [2] is organized as
follows. On the first stage, we generate the setup package
with the compiled bit-code and the auto-generated scripts
that allow its code generation to the native code on the target
device. The setup package is built through utilizing a
configure script called configure-proxy, which automatically
generates the build script. The original compilers are also
invoked using similarly organized wrappers. Also, we have
made the changes to the compiler frontend and the linker
allowing to record dependencies between separate program
modules.

The setup package construction is finalized after the program
build and installation. All recorded dependencies (built
libraries and executables in the LLVM bitcode format, files
that were created during program installation) are included in
the package together with the generated scripts for the target
device.

We support invoking link-time optimizations to improve the
generated code performance. More generally, it is important
to optimize code on the first stage as much as possible to
lower the burden on the second stage optimizations, which
might happen on the mobile target device. On the second
stage, we support two installation choices – either static code

1 We acknowledge support from the Russian Foundation for
Basic Research grant #11-01-00954-а

generation into the native target code or dynamic
compilation with profile information generated by the user.
Both static and dynamic compilation paths can fully
optimize target-specific knowledge while optimizing (e.g.
code generation, auto vectorization, software pipelining and
scheduling, prefetching, etc.). The implemented tools allow
the programmers to support static and dynamic optimization
between program bitcode and other modules fully
automatically (which may be linked either statically or
dynamically and may also be distributed either as native
code or bitcode).

2. LLVM BITCODE APPLICATION
SERVER
When using two-stage compilation workflow for mobile
devices, one must be careful to select the proper
optimizations to be executed on the target device, as it is
usually limited both in available performance and memory.
It is desirable to remove the optimization burden from the
target by utilizing a separate cloud application server (known
as App Store), which can perform target-specific
optimization and code generation for each user mobile
device separately and transparently to the user, given that the
applications are stored in the setup package format with
LLVM bitcode described above.

To perform profile-specific optimizations in the cloud, it is
required that the target device should occasionally send the
profile information to the cloud, so that the application
server can utilize this information and distribute the updated
version of the application back to the user. Different
strategies of handling profile-specific information are
possible. The simplest way will be to unify all user profiles,
which lowers the resources required for profile-based
optimizations but delivers an average-performing application
to every user. Other strategy could be to support saving
several sets of profile information corresponding to different
classes of application use cases, so that on receiving the new
profile information the application server could classify it as
belonging to the known class and then deliver the
correspondingly optimizing application, or otherwise
to create a new profile information class if the new data
is substantially different from existing ones.

Storing applications in LLVM bitcode format in the cloud
application server calls for other use cases, such as automatic
security vulnerability checks using static analysis tools
similar to Svace[3], or implementing obfuscation techniques
[4] to create unique application versions for every user,
which will make creating universal security exploits
substantially harder.

3. TWO-STAGE TOOLCHAIN
PERFORMANCE OPTIMIZATIONS
In this section we sketch the most important optimizations
that were developed for the two-stage compilation toolchain.
The optimizations were tested on ARM devices on a number
of benchmarks and packages, including SPEC CPU 2000,
Coremark, SQLite, CLucene, Cray and Expedite.

3.1. Speculative Devirtualization
Devirtualization [5] is an analysis technique that allows to
determine the possible set of targets for a function pointer
call. It is important for object-oriented languages like C++
where any virtual method call results in a function pointer
call. Devirtualization allows either to replace an indirect call
with a direct one, if there is only one possible target, or
to speculatively choose one of the possible variants based
on the generated runtime check.

We have implemented a speculative devirtualization
approach based on comparing function signatures, type
hierarchy graph analysis (also known as inheritance graph),
and static analysis of possible types for the given function
pointer. When we determine several possible candidates, we
generate a single runtime check for the hottest version for its
speculative devirtualization and do not devirtualize the
remaining cold variants.

The LLVM bitcode does not contain the high-level type
information required for devirtualization, so that we have
implemented the type hierarchy analysis in the Clang
frontend with saving its results in the LLVM bitcode
metadata. On our benchmarks we have received ~3%
performance increase with just 1% code size increase. When
manually assuming closed world application for CLucene,
we have received 10% performance improvement. The
implementation also passes devirtualization tests of the GCC
[6] compiler. We are working on properly recognizing all
variants of external functions to avoid their too aggressive
devirtualization and on improving static type analysis
precision.

3.2. Array Prefetching in Loops
The array prefetching optimization inserts target-dependent
prefetching commands for optimizing cache utilization when
processing array data in loops. The prefetching commands
should be executed well in advance so that the required data
would be loaded in cache in time. This requires the
knowledge of the number of commands executed between
the prefetching command and the data usage. As we have
implemented this optimization over the LLVM bitcode,
which is not machine-specific, we use heuristic estimation of
the number of executed machine commands for every
bitcode instruction (e.g. for calls the number is dependent on
the number of arguments, for some instructions there is no
machine commands generated, etc.).

We also need to estimate the number of loop iterations that
we need to prefetch data for. This number can be estimated
as a division of prefetching delay commands number to the
number of machine commands in a single loop iteration. For
example, for ARM Cortex-A9 about 200 commands are
executed before the data being prefetched gets loaded to the
cache [7]. The number of loop iterations are estimated either
through static analysis or from the program profile when it is
available.

We unroll loops to avoid prefetching data too often
(the data which is already in the cache does not need
prefetching). The unroll factor is determined so that the data
required for the single iteration of the unrolled loop will
occupy one cache line. For example, the cache line size on
ARM Cortex-A9 is 32 bytes, and if one loop iteration loads
just 4 bytes, we need to unroll the loop 8 times.

The performance increase because of prefetching on SPEC
CPU 2000 is ~0.9%, the increase for SQLite, Expedite, Cray
and Coremark is ~0.5%-5%, averaging ~2.5%.

3.3. Function Inlining
We have improved the existing LLVM function inlining
based on the GCC inlining implementation. We were mostly
interested in the profile information usage for inlining. The
decision on whether to inline a callee function is based on
the relative frequency of function calls, their absolute
number, and the caller function growth estimation done in
target-independent manner and taking into account possible
simple optimizations enabled by inlining.

We estimate function weight as follows:

FunctionWeight = NumofInstructions ×
InstructionPenalty – NumArguments ×
AllocaPenalty – NumofConstInstruction ×
ConstantPenalty,

where InstructionPenalty=2 is the instruction
cost, AllocaPenalty=2 is the local
variable cost, ConstantPenalty=2 is the
constant value cost. The function weight with taking
profile information into account is calculated as
follows:
NewWeight= NumCallProfileInfo/FunctionWeight

After function weight calculation we sort functions by
increasing weight and inline them until the total weight
exceeds the given threshold. The performance increase for
SQLite, Expedite, Cray, and Coremark benchmarks is ~2%.

3.3. Function Outlining
The frequent pattern for writing functions is the function
consisting of two parts: a relatively small hot part (e.g., a
quick check for hot data and resulting fast calculations) and a
large cold part (more expensive calculation when the data is
absent or corrupt)[8]. It is desirable to outline the hot
function part in a separate function, which then may be
separately optimized (e.g. inlined), and the cold part may be
placed in the separate executable section so that it does not
interfere with the hot program parts.

First, we determine hot functions based on the k-means
clusterization algorithm. We support three classes – hot,
medium, and cold functions. For hot functions, we in turn
determine cold control flow edges (relative to the other edge
of the single conditional jump) and then we select the control
flow region that can be executed only by transferring flow
over cold edges (we select basic blocks that are dominated
by the cold edge target blocks)[8][9].

The performance increase on SQLite, Expedite, Cray, and
Coremark benchmarks is ~0.8%, and we get ~3% increase
when combining this technique with function inlining. The
code size increase is ~1-7% depending on the application.

3.3. Determining Dynamic Optimization
Level
It is widely known that during dynamic optimization (JIT)
only the hottest program parts should be heavily optimized,
and the rest can be optimized only slightly as their
performance does not affect significantly the total program
performance. JIT compilers often utilize heuristic
approaches to find out the proper optimization level for the
given function [10],[11].

When testing our two-stage compilation approach on the
target mobile ARM-based devices, we have implemented
three variants of optimization levels like below:

• Minimal: no optimization (level zero) for cold functions
and level two (so called standard optimizations) for hot
functions;

• Medium: light optimizations (level one) for cold functions
and aggressive optimizations (level three) for hot
functions;

• Maximum: level two optimizations for cold functions and
level three optimizations for hot functions.

When testing on SQLite benchmark, we have found that the
minimal level saves up to 90% compile time with the
performance similar to the standard level two optimizations.
For medium level, we save 2-5% compile time with
the performance increase of 1-3% compared with the
level three optimizations. The maximum level produces
performance increase of 3-4% when compared with
the level three optimizations and saves 1-3% compile
time.

4. CONCLUSION
The paper describes the two-stage compilation toolchain
based on LLVM bitcode, which allows distributing
applications in bitcode and optimizing them in the cloud
application server with fully taking into account target-
specific hardware features and user-specific profile
information. Deploying application through the cloud server
allows checking their bitcode form for security
vulnerabilities and other defects. The toolchain is also
capable in operating directly on the target device supporting
either static code generation or just-in-time optimizations.

A number of profile-directed optimizations were
implemented in the toolchain, providing performance
increases between 1% and 7-10% depending on the
application. The most beneficial optimizations include
speculative devirtualization and function inlining/outlining.

REFERENCES

[1] Chris Lattner, “LLVM: An Infrastructure for Multi-Stage
Optimization”, Master’s thesis, Computer Science Dept.,
University of Illinois at Urbana-Champaign, Urbana, IL.
[2] Arutyun Avetisyan. "Two-stage compilation for
optimizing and deploying programs in general purpose
languages", Proceedings of the Institute for System
Programming of RAS, volume 22, pp. 11-18. , 2012
[3] Arutyun Avetisyan, Andrey Belevantsev, Alexey
Borodin, Vladimir Nesov, "Using static analysis for finding
security vulnerabilities and critical errors in source code.",
Proceedings of the Institute for System Programming of
RAS, volume 21, pp. 23-38, 2011
[4] Kurmangaleev S.F. Korchagin V.P. Savchenko V.V.
Sargsyan S.S. “Building obfuscation compiler based on

LLVM infrastructure”. Proceedings of the Institute for
System Programming of RAS, volume 23, pp. 77-92, 2012
[5] David F. Bacon and Peter F. Sweeny, “Fast Static
Analysis of C++ Virtual Functuion Call”, OOPSLA '96
Proceedings of the 11th ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and
applications pp 324-341, 1996
[6] GCC Free software foundation, http://gcc.gnu.org
[7] ARM Architecture Reference Manual,
http://infocenter.arm.com
[8] Peng Zhao “Code and Data Outlining”, Doctor of
Philosophy thesis, Edmonton, Alberta, 2005.
[9] Jun-Pyo Lee, Jae-Jin Kim, Soo-Mook Moon, Suhyun
Kim ”Aggressive Function Splitting for Partial Inlining”,
INTERACT’11 Proceedings of the 2011 15th Workshop on
Interaction between Compilers and Computer Architectures,
Seoul, South Korea, pp. 80-86, 2011.
[10] Da Silva, A. F. “Our Experiences with Optimizations in
Sun’s Java Just-In-Time Compilers” Journal of Universal
Computer Science. Vol. 12, pp. 788-810, 2006.
[11] M. Arnold, Stephen J. Fink, D. Grove, M. Hind, Peter F.
Sweeney. A Survey of Adaptive Optimization in Virtual
Machines. Proceedings of IEEE, vol.93, No.2, pp. 449-466,
2005.

