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ABSTRACT
Let D be a strong digraph on n ≥ 4 vertices. In [3, Dis- 
crete Applied Math., 95 (1999) 77-87)], J. Bang-Jensen, 
Y. Guo and A. Yeo proved the following theorem: if (*) 
d(x) + d(y) ≥ 2n − 1 and min{d+(x) + d−(y), d−(x) + 
d+(y)} ≥ n − 1 for every pair of non-adjacent vertices 
x, y with a common in-neighbour or a common out- 
neighbour, then D is hamiltonian. In this note we show 
that: if D is not a directed cycle and satisfies the con- 
dition (*), then D contains a cycle of length n − 1 or 
n − 2.
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1. INTRODUCTION AND TERMINOL-
OGY

We shall assume that the reader is familiar with the 
standard terminology on directed graphs (digraphs) and 
refer the reader to monograph of Bang-Jensen and Gutin 
[1] for terminology not discussed here. In this paper we 
consider finite digraphs without loops and multiple arcs. 
For a digraph D, we denote by V (D) the vertex set of D 
and by A(D) the set of arcs in D. Often we will write 
D instead of A(D) and V (D). The arc of a digraph 
D directed from x to y is denoted by xy. For disjoint 
subsets A and B of V (D) we define A(A → B) as 
the set {xy ∈ A(D)/x ∈ A, y ∈ B} and A(A, B) = 
A(A → B) ∪ A(B → A). If x ∈ V (D) and A = 
{x} we write x instead of {x}. The out-neighbourhood 
of a vertex x is the set N+(x) = {y ∈ V (D)/xy ∈ 
A(D)} and N−(x) = {y ∈ V (D)/yx ∈ A(D)} is the 
in-neighbourhood of x. Similarly, if A ⊆ V (D) then 
N+(x, A) = {y ∈ A/xy ∈ A(D)} and N−(x, A) = {y ∈ 
A/yx ∈ A(D)}. We call the vertices in N+(x), N−(x), 
the out-neighbours and in-neighbours of x. The out- 
degree of x is d+(x) = |N+(x)| and d−(x) = |N−(x)| is 
the in-degree of x. The out-degree and in-degree of x we 
call its semi-degrees. Similarly, d+(x, A) = |N+(x, A)| 
and d−(x, A) = |N−(x, A)|. The degree of the vertex x in 
D is defined as d(x) = d+(x) + d−(x) (similarly, d(x, A) 
= d+(A) + d−(A)). The subdigraph of D in- duced by a 
subset A of V (D) is denoted by 〈A〉. The path 
(respectively, the cycle) consisting of the distinct vertices 
x1, x2, . . . , xm ( m ≥ 2) and the arcs xixi+1, i ∈ [1, m−1] 
(respectively, xixi+1, i ∈ [1, m−1], and xmx1),

is denoted x1x2 · · ·xm (respectively, x1x2 · · ·xmx1). For
a cycle Ck = x1x2 · · ·xkx1, the subscripts considered
modulo k, i.e. xs = xi for every s and i such that
i ≡ s (mod k). If P is a path containing a subpath from
x to y we let P [x, y] denote that subpath. Similarly, if
C is a cycle containing vertices x and y, C[x, y] denotes
the subpath of C from x to y. A digraph D is strongly
connected (or just strong) if there exists a path from x
to y and a path from y to x in D for every choice of
distinct vertices x, y of D. We will denote the complete
bipartite digraph with partite sets of cardinalities p, q
by K∗

p,q. Two distinct vertices x and y are adjacent if
xy ∈ A(D) or yx ∈ A(D) (or both). We denote by
a(x, y) the number of arcs between the vertices x and
y. In particular, a(x, y) = 0 (respectively, a(x, y) 6= 0)
means that x and y are not adjacent (respectively, are
adjacent).
For integers a and b, a ≤ b, let [a, b] denote the set of all
integers which are not less than a and are not greater
than b. The digraph D is hamiltonian (is pancyclic, re-
spectively) if it contains a hamiltonian cycle, i.e. a cycle
of length |V (D)| (contains a cycle of length m for any
3 ≤ m ≤ |V (D)|).
Meyniel [12] proved the following theorem: if D is a
strong digraph on n ≥ 2 vertices and d(x)+d(y) ≥ 2n−1
for all pairs of non-adjacent vertices in D, then D is
hamiltonian (for short proofs of Meyniel’s theorem see
[4, 13]).
Thomassen [15] (for n = 2k + 1) and Darbinyan [6] (for
n = 2k) proved: if D is a digraph on n ≥ 5 vertices with
minimum degree at least n−1 and with minimum semi-
degree at least n/2 − 1, then D is hamiltonian (unless
some extremal cases).
In each above mentioned theorems (as well as, in the-
orems Ghouila-Houri [10], Woodall [16], Manoussakis
[11]) imposes a degree condition on all pairs of non-
adjacent vertices (on all vertices). Bang-Jensen, Gutin,
Li, Guo and Yeo [2, 3] obtained sufficient conditions
for hamiltonicity of digraphs in which degree conditions
requiring only for some pairs of non-adjacent vertices.
Namely, they proved the following theorems (in all three
theorems D is a strong digraph on n ≥ 2 vertices).
Theorem A [1, 2]. If min{d(x), d(y)} ≥ n − 1 and
d(x) + d(y) ≥ 2n − 1 for every pair of non-adjacent
vertices x, y with a common in-neighbour, then D is
hamiltonian.
Theorem B [1, 2]. If min{d+(x) + d−(y), d−(x) +
d+(y)} ≥ n for every pair of non-adjacent vertices x, y
with a common out-neighbour or a common in-neighbour,
then D is hamiltonian.
Theorem C [3]. If min{d+(x)+d−(y), d−(x)+d+(y)} ≥
n − 1 and d(x) + d(y) ≥ 2n − 1 for every pair of non-



adjacent vertices x, y with a common out-neighbour or a 
common in-neighbour, then D is hamiltonian.
Note that Theorem C generalizes Theorem B. In [9, 14, 
5, 7] it was shown that if the strong digraph D satis- fies 
the condition of the theorem of Ghouila-Houri [10] 
(Woodall [16], Meyniel [12], Thomassen and Darbinyan 
[15, 6]), then D is pancyclic (unless some extremal cases, 
which are characterized). In [8], we posed the following 
problem:
Problem. Characterize those digraphs which satisfy the 
conditions of Theorem A (B, C), but are not pan- cyclic.
In [8], we have shown that:
(i) if a strong digraph D satisfies the condition of Theo- 
rem A and the minimum semi-degree of D at least two; 
or
(ii) if a strong digraph D is not a directed cycle and satis- 
fies the condition of Theorem B, then either D contains a 
cycle of length n − 1 or n is even and D is isomorphic to 
complete bipartite digraph or to complete bipartite 
digraph minus one arc.
In [8], we also posed the following
Conjecture. Let a digraph D on n ≥ 4 vertices satisfy 
the conditions of Theorem C. Then D contains a cycle of 
length n−1 maybe except some digraphs which have a 
”simple” characterization.
Support for the our conjecture, in this note by using the 
proof of Theorem C ( Theorem 3.1, [3]), we show that: if 
D is not a directed cycle and satisfies the conditions of 
Theorem C,  then  D  contains a cycle of length n − 1 or 
n − 2.

2. PRELIMINARIES
The following well-known simple lemmas are the basis of 
our results and other theorems on directed cycles and 
paths in digraphs. They will be extensively used in the 
proof of our result.
Lemma 1 [9]. Let D be a digraph on n ≥ 3 vertices 
containing a cycle Cm, m ∈ [2, n − 1]. Let x be a vertex 
not contained in this cycle. If d(x, Cm) ≥ m + 1, then D 
contains a cycle Ck for all k ∈ [2, m + 1].
Lemma 2 [4]. Let D be a digraph on n ≥ 3 vertices 
containing a path P := x1x2 . . . xm, m ∈ [2, n − 1] and let 
x be a vertex not contained in this path. If one of the 
following conditions holds:
(i) d(x, P ) ≥ m + 2;
(ii) d(x, P ) ≥ m + 1 and xx1 ∈/ D or xmx1 ∈/ D;
(iii) d(x, P ) ≥ m, xx1 ∈/ D and xmx ∈/ D;
then there is an i ∈ [1, m− 1] such that xix, xxi+1 ∈ D, 
i.e. D contains a path x1x2 . . . xixxi+1 . . . xm of length m 
(we say that x can be inserted into P or the arc xixi+1 is a 
partner of x on P ).
Lemma 3 [2]. Let P := x1x2 . . . xm be a path in D and let 
x, y be vertices of V (D) − V (P ) (possibly x = y). If there 
do not exist consecutive vertices xi, xi+1 on P such that 
xix, yxi+1 are arcs of D, then d−(x, P ) + d+(y, P ) ≤ m 
+ ε, where ε = 1 if xmx ∈ D and 0, otherwise.

3. MAIN RESULT
Let C be a cycle in digraph D. For the cycle C, a C-
bypass is an (x, y)-path P of length at least two with
both end-vertices x and y on C and no other vertices on
C. The length of the path C[x, y] is the gap of P with
respect to C.
If {x, y} is a pair of non-adjacent vertices with a com-
mon in-neighbour or a common out-neighbour, then in
the proof of the theorem we say that {x, y} is a good
pair.

In the proof of our theorem we use (mainly) the notations 
which are used in the proof of Theorem C (Theorem 3.1, 
[3]).
Theorem. Let D be a strong digraph with n ≥ 2 ver- 
tices, which is not a directed cycle. Suppose that 
min{d+(x) + d−(y), d−(x) + d+(y)} ≥ n − 1 and d(x) + 
d(y) ≥ 2n − 1 for every pair of non-adjacent vertices x, y 
with a common out-neighbour or a common in- 
neighbour, then D contains a cycle of length n−2 or n−1.
Proof. Suppose, to the contrary, that D contains no cy- 
cles of length n−2 or n−1. Let C := x1x2 . . . xmx1 be a 
longest non-hamiltonian cycle in D. Then 3 ≤ m ≤ n−3 
and let R := V (D) − V (C). Observe that if y ∈/ V (C), 
then y has no partner on C. We shall use this often 
without an explicit reference. For the digraph D 
provided that D is not hamiltonian, in [3] (Theorem 3.1), 
J.Bang- Jensen, Y. Guo and A. Yeo proved the following 
Claims 1 and 2.
Claim 1. Let y be a vertex of R. If xα 6= xβ , xαy, yxβ ∈ D 
and A(y, C \ V (C[xβ , xα]) = ∅, then the fol- lowing 
holds:

|V (C
′
)| ≥ 1, d(y, C) = d(y, C

′′
) = |C′′ |+ 1, (1)

d+(xβ−1, C
′′
) + d−(xα+1, C

′′
) = |C′′ |+ 1, (2)

d(y, R)+d+(xβ−1, R)+d−(xα+1, R) = 2(n−m−1), (3)

d+(xβ−1, C
′
) = d−(xα+1, C

′
) = |C′ | − 1, (4)

where C
′

:= C[xα+1, xβ−1] and C
′′

:= C[xβ , xα].
Claim 2. D contains a C-bypass. Note that Claims
1 and 2 also are true if in D a longest non-hamiltonian
cycle has length at most n − 3 (the proofs are just the
same).

From (4) it follows that if |C′ | ≥ 2, then
P := xβ−1xα+2 . . . xβ−2xα+1 is a hamiltonian (xβ−1, xα+1)-

path in 〈C′〉. Therefore, similarly (2), we obtain (Lemma
3)

d−(xβ−1, C
′′
) + d+(xα+1, C

′′
) = |C′′ |+ 1.

Combining this last inequality with (2) yields

d(xβ−1, C
′′
) + d(xα+1, C

′′
) ≤ 2|C′′ |+ 2. (5)

We now prove the following claim:
Claim 3. Let xmyxγ+1 be a C-bypass and
A(y, C[x1, xγ ]) = ∅. Then γ ≥ 3.

Proof. Suppose that γ ≤ 2. Let now C
′′

:= C[xγ+1, xm].
We shall consider the cases γ = 1, γ = 2 separately.
Case 1. γ = 1. Then similarly (1) and (3) we have

d(y, C) = d(y, C
′′
) ≤ m, d(x1, C

′′
) ≤ m and d(y, R) +

d(x1, R) ≤ 2(n − m − 1). Therefore, since {y, x1} is a

good pair and |C′′ | = m− 1, we have

2n− 1 ≤ d(y) + d(x1) = d(y, R ∪ C
′′
) + d(x1, R ∪ C

′′
)

≤ 2(n−m− 1) + 2|C′′ |+ 2 = 2n− 2,

a contradiction.
Case 2. γ = 2. Then, since |R| ≥ 3, for any i ∈ [1, 2]
we obtain that d(y, R) + d(xi, R) ≤ 2(n−m− 1). Since
{y, xi} is a good pair and (1), it follows that

2n−1 ≤ d(y)+d(xi) ≤ 2(n−m−1)+d(y, C
′′
)+d(xi, C

′′
)

+2 ≤ 2(n−m− 1) + |C′′ |+ 3 + d(xi, C
′′
).

From this we obtain that d(xi, C
′′
) ≥ m = |C′′ | + 2.

Hence, by Lemma 2, the vertex x1 (x2) has a partner



on C
′′
. Therefore there is a (x3, xm)-path with vertex

set V (C). This path with the vertex y forms a non-
hamiltonian cycle longer than C. Claim 3 is proved.
Let P := u1u2 . . . us (s ≥ 3) be a C-bypass with min-
imum gap among the gaps of all C-bypasses. Assume
w.l.o.g. that P is minimal with respect to the minimum
gap and let u1 := x1, us := xγ with 2 ≤ γ ≤ m.
In the following we suppose, further, that γ = 2 (the
proof for the case γ ≥ 3 is same as the proof of Theo-
rem C (Theorem 3.1, [3])).
Then R = {u2, u3, . . . , us−1}, s ≥ 5 and for any pair of
i, j with 2 ≤ i < j ≤ s− 1

uiuj ∈ D if and only if j = i + 1. (6)

Since |R| ≥ 3 and C is a longest non-hamiltonian cycle
in D, it is easy to see that

x1us−1 /∈ D, u2x2 /∈ D

and

d−(u2, {xm−1, xm}) = d+(us−1, {x3, x4}) = 0. (7)

Case 1. x2u2 /∈ D and there is an i ∈ [3, m] such
that xiu2 ∈ D. Then by (7) we have a(x2, u2) = 0,
3 ≤ i ≤ m− 2 and by Claim 3, d+(u2, {x3, x4}) = 0.
Assume that d+(u2, C[xi+1, x1]) 6= 0. Then there are
integers l and j with i ≤ l ≤ j − 1 ≤ m such that
xlu2, u2xj ∈ D and A(u2, C[xl+1, xj−1]) = ∅. By (1),

d(u2, C) = d(u2, C[xj , xl]) = |C[xj , xl]|+ 1.

On the other hand, since u2x3 /∈ D, using Lemma 2 we
obtain that

d(u2, C) = d(u2, C[x3, xl]) + d(u2, C[xj , x1])

≤ |C[x3, xl]|+ |C[xj , x1]|+ 1 = |C[xj , xl]|,
a contradiction.
Now assume that d+(u2, C[xi+1, x1]) = 0. Let i be min- 
imal as possible, i.e. d−(u2, C[x2, xi−1]) = 0. Then by 
(7) we have A(u2, {xm−1, xm}) = ∅. Let xj u2 ∈ D, i ≤ j 
≤ m − 2 and let j be maximal with these proper- ties. If 
d+(u2, C[x2, xi]) = 0, i.e. d+(u2, C) = 0, then d+(u2) = 1 
because of (6). Since {u2, xj+1} is a good pair, by the 
condition of the theorem we have d+(u2) + d−(xj+1) ≥ n 
− 1. Therefore d−(xj+1) ≥ n − 2. On the other hand, it is 
easy to check that d−(xj+1, {u2, u3}) = 0, and hence, 
d−(xj+1) ≤ n − 3, a contradiction. So we can assume 
that d+(u2, C[x2, xi]) 6= 0. Let u2xk ∈ D, where xk ∈ C[x2, 
xi], and k be minimal as possible. Then, from the 
minimality of i and k it follows that A(u2, C[x2, xk−1]) = 
∅. Hence, by Claim 3, k ≥ 5. By (1) (Claim 1) we have

d(u2, C) = d(u2, C[xk, x1]) = |C[xk, x1])|+ 1.

On the other hand, since A(u2, {xm−1, xm}) = ∅ and
u2x1 /∈ D, using Lemma 2 we obtain that

d(u2, C) = d(u2, C[xk, xm−2]) + a(u2, x1)

≤ |C[xk, xm−2]|+ 2 ≤ |C[xk, x1]|,
a contradiction.
Case 2. x2u2 /∈ D and xiu2 /∈ D for every i ∈ [3, m].
Then d−(u2, C[x2, xm]) = 0.
First assume that there is a xi ∈ C[x2, xm] such that
u2xi ∈ D and A(u2, C[x2, xi−1]) = ∅. By Claim 3,

i ≥ 5. Let now C
′′

:= C[xi, x1] and C
′

:= C[x2, xi−1].

Note that |C′′ |+ |C′ | = m.
Remark. It is a simple matter to check that

(i) d(xi−1, C
′) ≤ 2|C′ | − 3 since xi−3xi−1 /∈ D;

(ii) if |C′ | = 3, then d(x2, C
′) ≤ 2|C′ |−3 since x2x4 /∈ D

(iii) if C
′ | ≥ 4, then d(x2, C

′) ≤ 2|C′ | − 4 since
d+(x2, {x4, x5}) = 0.
By (5) we have that

d(x2, C
′′
) + d(xi−1, C

′′
) ≤ 2|C′′ |+ 2. (8)

It is not difficult to see that

d−(x2, R) = 1, d+(x2, R) ≤ n−m− 1 and hence,

d(x2, R) ≤ n−m. (9)

d−(xi−1, R) ≤ n−m− 1, d+(xi−1, R) ≤ n−m− 1− l

where l := d−(u2, R), and d(u2, R) ≤ l + 1. (10)

From (8) it follows that

d(x2, C
′′
) ≤ |C′′ |+ 1 or d(xi−1, C

′′
) ≤ |C′′ |+ 1.

Let d(x2, C
′′
) ≤ |C′′ |+1. Then, since {x2, u2} is a good

pair, by (1), (6) and (9) we have

2n−1 ≤ d(u2)+d(x2) = d(u2, R∪C
′′
)+d(x2, R∪C

′′∪C′)

≤ 2n− 2m + 2 + 2|C′′ |+ d(x2, C
′).

Hence d(x2, C
′) ≥ 2|C′ | − 3, d(u2, R) = n − m and

d+(x2, R) = n − m − 1. By Remark, |C′ | = 3 (i.e.,
i = 5). Therefore us−1u2, x2u3 ∈ D and hence,
x2u3 . . . us−1u2x5 . . . xmx1x2 is a cycle of length n − 2,
which is a contradiction.
Let now d(xi−1, C

′′
) ≤ |C′′ | + 1. Since {u2, xi−1} is a

good pair, |C′ | + |C′′ | = m and xi−3xi−1 /∈ D, using
(1), (10) and Remark we obtain,

2n− 1 ≤ d(u2) + d(xi−1) = d(u2, R ∪ C
′′
)

+d+(xi−1, R) + d−(xi−1, R)

+d(xi−1, C
′′ ∪ C′) ≤ 2n− 2,

a contradiction.
Second assume that d+(u2, C[x2, xm]) = 0. Then
A(u2, C[x2, xm]) = ∅. Since {x2, u2} is a good pair and
d(x2, R) ≤ n−m, this implies that

2n− 1 ≤ d(u2) + d(x2)

≤ 2 + d(u2, R)+ d(x2, C ∪R) ≤ 2 + 2n− 2m + d(x2, C).

From this we obtain that d(x2, C) = 2m−3 since x2x4 /∈
D (recall that m ≥ 3). Now it is not difficult to see
that m = 3, x2x1 /∈ D, u2x1, us−1u2, x2u3 ∈ D and
x2u3 . . . us−1u2x1x2 is a cycle of length n− 1, a contra-
diction.
Case 3. x2u2 ∈ D. We can assume that us−1x1 ∈ D
(otherwise in the converse digraph of D we will have the
considered Case 1 or 2).
First assume that d+(u2, C[x3, x1]) 6= 0. Choose xi so
that u2xi ∈ D and |C[x2, xi−1]| is as small as possi-
ble. Since x2u2 ∈ D, there is a xj ∈ C[x2, xi−1] such
that xju2 ∈ D and A(u2, C[xj+1, xi−1]) = ∅. Let now

C
′′

:= C[xi, xj ] and C
′

:= C[xj+1, xi−1]. By Claim 3
and (1) (Claim 1) we have

|C′ | ≥ 3 and d(u2, C) = d(u2, C
′′
) = |C′′ |+ 1. (11)

Since xmu2 ∈/ D, using Claim 3, (11) and Lemma 2 it is 
not difficult to obtain

N−(u2, C) = {x1, x2, . . . , xj}
and

N+(u2, C) = {xi, xi+1, . . . , xm, x1}. (12)



If us−1u2 /∈ D, then us−1 and u2 are not adjacent and
hence, {u2, us−1} is a good pair since u2x1, us−1x1 ∈ D.
Now from (6), (11) and the condition of the theorem it
follows that

d(u2) = d(u2, C)+d(u2, R) ≤ n−m−1+m−2 = n−3

and

n + 2 ≤ d(us−1) = d(us−1, R) + d(us−1, C)

≤ n−m− 1 + d(us−1, C).

Therefore d(us−1, C) ≥ m + 3, and by Lemma 1 us−1

has a partner on C, which is a contradiction. So we can
assume that this is not the case, i.e. us−1u2 ∈ D. Then
by (12) and the maximality of the cycle C we conclude
that

d+(xj+1, R) ≤ n−m− 1, d−(xj+1, R) = 0,

and hence,

d(xj+1, R) ≤ n−m− 1. (14)

d−(xi−1, R) ≤ n−m−1, d+(xi−1, R) = d+(xi−1, {u3}).
(15)

If d+(xi−1, {u3}) = 1, then xi−1u3 ∈ D and u2xi+1 /∈
D. Therefore by (12), xi = x1 and xi−1 = xm. Hence
we have xmu3 ∈ D and the cycle xmu3 . . . us−1x2 . . . xm

longer than C, which is a contradition. So we can as-
sume that d+(xi−1, R) = 0 and therefore, d(xi−1, R) ≤
n−m− 1.
From (15) it follows that d(xi−1, C

′′
) ≤ |C′′ | + 1 or

d(xj+1, C
′′
) ≤ |C′′ | + 1. Assume that d(xi−1, C

′′
) ≤

|C′′ |+ 1. Then, since {u2, xi−1} is a good pair, by (1),
(14) and xi−3xi−1 /∈ D we have

2n− 1 ≤ d(u2) + d(xi−1)

= d(u2, R ∪ C) + d(xi−1, R) + d(xi−1, C
′′ ∪ C′) ≤ 2n− 2,

a contradiction. Similarly we obtain a contradiction if

we assume that d(xj+1, C
′′
) ≤ |C′′ |+ 1.

Second assume that d+(u2, C[x3, x1]) = 0. From x2u2 ∈ 
D and d−(u2, {xm−1, xm}) = 0 it follows that there is a 
xj ∈ C[x2, xm−2] such that xj u2 ∈ D and A(u2, C[xj+1, 
xm]) = ∅. Note that {u2, xj+1} is a good pair. Then 
d−(xj+1) ≥ n − 2 since d+(u2) = 1. From d−(xj+1, R) ≤ 
1 implies that d−(xj+1, C) ≥ n − 3 ≥ m, which is 
impossible. Hence, in all possible cases we reach a 
contradiction. The proof of the theorem is complete.

REFERENCES
[1] N. Author, ”Paper title”, Journal name, pp. x-xx,

year.

[2] J. Bang-Jensen, G. Gutin, Digraphs: Theory,
Algorithms and Applications, Springer, 2000.

[3] J. Bang-Jensen, G. Gutin, H. Li, Sufficient
conditions for a digraph to be hamiltonian, J. Graph
Theory 22 (2) (1996) 181-187.

[4] J. Bang-Jensen, Y. Guo, A.Yeo, A new sufficient
condition for a digraph to be hamiltonian, Discrete
Applied Math., 95 (1999) 77-87.

[5] J.A. Bondy, C. Thomassen, A short proof of
Meyniel’s theorem, Discrete Math. 19 (1977)
195-197.

[6] S.Kh. Darbinyan, Pancyclic and panconnected
digraphs, Ph. D. Thesis, Institute Mathematici
Akad. Nauk BSSR, Minsk, 1981 (see also,
Pancyclicity of digraphs with the Meyniel condition,
Studia Sci. Math. Hungar., 20 (1-4) (1985) 95-117,
in Russian).

[7] S.Kh. Darbinyan, A sufficient condition for the
Hamiltonian property of digraphs with large
semidegrees, Akad. Nauk Armyan. SSR Dokl. 82 (1)
(1986) 6-8 (see also, arXiv: 1111.1843v1 [math.CO]
8 Nov 2011).

[8] S.Kh. Darbinyan, On the pancyclicity of digraphs
with large semidegrees, Akad. Nauk Armyan. SSR
Dokl. 83 (3) (1986) 99-101 (see also, arXiv:
1111.1841v1 [math.CO] 8 Nov 2011).

[9] S.Kh. Darbinyan, I.A. Karapetyan, On longest
non-hamiltonian cycles in digraphs with the
conditions of Bang-Jensen, Gutin and Li, Preprint
available at http:// arXiv.org/abs/1207.5643v1
[math. CO] 24 Jul 2012.
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