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Abstract—The broadcast time of a graph G, denoted b(G), is
the minimum time necessary to complete the broadcasting in G,
i.e. from one of vertices send a message to all other vertices. The
Knödel graph W∆,n is a regular graph of even order and degree
∆ where 2 ≤ ∆ ≤ blog2 nc. The broadcast time of the Knödel
graph is known only for W∆,2∆ and for W∆−1,2∆−1 . In this paper
we present a tight upper and lower bounds on the broadcast time
of the Knödel graph for all even n and 2 ≤ ∆ ≤ blog2 nc. We
show that 2
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+ 1 ≤ b(W∆,n) ≤

⌈
n−2

2∆−2

⌉
+ ∆− 1.

I. INTRODUCTION

Broadcasting is the process of distributing a message from a
node, called the originator, to all other nodes of a communica-
tion network. Broadcasting is accomplished by placing series
of calls over the communication channels of the network and
takes place in discrete time units, sometimes called rounds.
Each call involves only two nodes, requires one time unit and
each node participates in at most one call per unit of time.

Generally, a network can be modeled as a connected graph
G = (V,E), where V is the set of all nodes and E is the
set of all communication lines. The broadcast time b(v,G) or
just b(v) of a vertex v in a connected graph G is defined as
the minimum time required to inform all the vertices of G.
The broadcast time b(G) of a graph G = (V,E) is defined as
b(G) = max{b(v)|v ∈ V }.

Since after each time unit the number of informed vertices
can at most double, for any graph G on n, vertices b(G) ≥
dlogne. A graph G with b(G) = dlogne, is called a broadcast
graph. A broadcast graph with the minimum possible number
of edges is called a minimum broadcast graph(mbg).

The Knödel graph W∆,n is a regular graph of even order and
degree ∆ where 2 ≤ ∆ ≤ blog nc (all logarithms in this paper
are base 2, unless otherwise specified). It was introduced by
Knödel for ∆ = blog nc and was used in an optimal gossiping
algorithm [21]. For smaller ∆, the Knödel graph is defined in
[8].

In this paper we study the broadcast time problem in the
Knödel graph. The broadcast time of the Knödel graph is
known only for W∆,2∆ and for W∆−1,2∆−1 . It is shown
that b(W∆,2∆) = ∆(∆ ≥ 1) [23],[5],[21] and that
b(W∆−1,2∆−1) = ∆(∆ ≥ 2) [20],[3].

The Knödel graph was widely studied as an interconnection
network topology and has good properties in terms of broad-
casting and gossiping. The Knödel graph W∆,2∆ is one of
the three non-isomorphic infinite graph families known to be
minimum broadcast and gossip graphs (graphs that have the

smallest possible broadcast and gossip times and the minimum
possible number of edges). The other two families are the well
known hypercube [5] and the recursive circulant graph [23].
The Knödel graph W∆−1,2∆−2 is a minimum broadcast and
gossip graph also for n = 2∆ − 2(∆ ≥ 2) [20],[3]. One of
the advantages of the Knödel graph as a network topology is
that it achieves the smallest diameter among known minimum
broadcast and gossip graphs for n = 2∆(∆ ≥ 1). All the min-
imum broadcast graph families — k-dimensional hypercube,
C(4, 2k)-recursive circulant graph and Wk,2k Knödel graph —
have the same degree k, but have diameters equal to k,
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and

⌈
k+2

2
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respectively. A detailed description of some graph

theoretic and communication properties of these three graph
families and their comparison can be found in [6].

As shown in [1], the edges of the Knödel graph can
be grouped into dimensions which are similar to hypercube
dimensions. This allows to use these dimensions in a similar
manner as in hypercube for broadcasting and gossiping. Unlike
the hypercube, which is defined only for n = 2k, the Knödel
graph is defined for any even number of vertices. Proper-
ties such as small diameter, vertex transitivity as a Cayley
graph [19], high vertex and edge connectivity, dimensionality,
embedding properties [6] make the Knödel graph a good
candidate as a network topology and good architecture for
parallel computing. Wblog nc,n guarantees the minimum time
for broadcasting and gossiping. So, it is a broadcast and gossip
graph [1],[7],[8]. Moreover, Wblog nc,n is used to construct
sparse broadcast graphs of a bigger size by interconnecting
several smaller copies or by adding and deleting vertices
[15],[12],[11],[2],[4],[13],[20],[14].

Multiple definitions are known for the Knödel graph. We use
the following definition from [8], which explicitly presents the
Knödel graph as a bipartite graph.

Definition 1. The Knödel graph on even number of vertices
n and of degree ∆ were 2 ≤ ∆ ≤ blog nc is defined as
W∆,n = (V,E) where

V = {(i, j) | i = 1, 2 j = 0, ..., n/2− 1},

E = {((1, j), (2, (j + 2k − 1) mod (n/2))) |
j = 1, ..., n/2 k = 0, 1, ...,∆− 1}.

We say that an edge ((1, j′), (2, j′′)) ∈ E is r-dimensional if
j′′ = (j′+2r−1) mod (n/2) where r = 0, 1, ...,∆−1. In this
case, (1, j′) and (2, j′′) are called r-dimensional neighbors.



Also, we say that the edge is modular when j′ + 2r − 1 > n/2.
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Fig. 1. The W3,14 graph and its 0, 1 and 2-dimensional edges

Fig. 1 illustrates W3,14 and its 0, 1 and 2-dimensional edges.
Despite being a highly symmetric and widely studied graph,
the diameter of the Knödel graph D(W∆,n) is known only
for n = 2∆. In [7], it was proved that D(W∆,2∆) =

⌈
∆+2

2

⌉
.

The nontrivial proof of this result is algebraic and the actual 
diametral path is not presented. In [10] a tight bound is

presented for D(W∆,n) for all even n and 2 ≤ ∆ ≤ blog2 nc.
In particular, it is shown that 2
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+3 for almost all ∆. The shortest path problem

in W∆,2∆ was studied in [18], where a 2-approximation 
algorithm with the logarithmic time complexity was presented.

Finding the broadcast time of a given graph is NP-hard 
[9],[25]. Only for very few graph families a polynomial 
time algorithm is known. A linear time algorithm for trees 
is presented in [25]. The algorithm in linear time finds the 
broadcast center of the tree, and using it, determines the 
broadcast time for all vertices. In [24], another linear time 
algorithm for trees is presented. A linear time algorithm is also 
known for the unicyclic graphs (connected graphs with only 
one cycle) [16], [17] and few other tree-like graph families 
[22].

II. BROADCAST TIME OF THE KNÖDEL GRAPH

In this section we present a tight upper and lower bounds 
on b(W∆,n) for all even n and 2 ≤ ∆ ≤ blog2 nc. For the 
upper bound, we will present a broadcast algorithm in Kn¨odel 
graph. The lower bound will follow from the known lower 
bound on the diameter of W∆,n from [10].

Let W ′∆,2∆ be a graph obtained from W∆,2∆ by removing
all the modular edges. See Fig. 2 for an illustration of W ′4,16.
Note that W ′∆,2∆ contains only half of edges of the original
Knödel graph. The following lemma gives the broadcast time
of vertex (1, 0) in W ′∆,2∆ .

Lemma 2. b((1, 0),W ′∆,2∆) = ∆.

Proof: It is clear that broadcasting from any originator 
must take at least ∆ time units, since W ′∆,2∆ has 2∆ vertices. 
Therefore, b((1, 0), W ′∆,2∆ ) ≥ ∆. Next, we present a 
recursive algorithm for broadcasting in W ′∆,2∆ from originator 
(1, 0) in ∆ time units. This will prove that b((1, 0), W ′∆,2∆ ) ≤
∆. The recursion will be on ∆.

The base case is when ∆ = 1. In this case we have two
vertices connected with an edge, therefore b(W1

′
,2) = 1.

For ∆ > 1, we note that W ′∆,2∆ can be partitioned into two
W ′∆−1,2∆−1 graphs as illustrated in Fig. 3. The originator (1, 0)

first will inform its (∆−1)−dimensional neighbour (2, 2∆−1−
1) in W ′∆,2∆ . After this, both partitions of W ′∆,2∆ will have
an informed vertex. Each of these two informed vertices will
become the new broadcast originator in its W ′∆−1,2∆−1 graph.
Since at each recursive step we use only one time unit and cut
the graph into two equal partitions, it follows that b(W ′∆,2∆) =
∆.

Fig. 2 illustrates the broadcast scheme of Lemma 2 in W ′4,16.
The bold edges are used for sending the message and are
labeled with the time at which they were used.

Next, we will interpret W∆,n as a “chain” of W ′∆,2∆ graphs. 
The idea of the presented broadcast algorithm is to inform one 
or two special vertices in each of these W ′∆,2∆ graphs as soon 
as it is possible. After getting informed, all these special 
vertices will start to broadcast in their W ′∆,2∆ graphs in 
parallel as in Lemma 2.
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Fig. 2. The W ′4,16 graph and the broadcast scheme.

Fig. 3. Recursive partitioning and broadcasting in W ′
∆,2∆ .

Lemma 3 (Theorem 7 in [10]). D(W∆,n) ≥ 2
⌊
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⌉⌋
+

1.

Proof: Note that in order to reach vertex x =

(1, c(2∆−1 − 1)) where c =
⌊

1
2

⌈
n−2

2∆−2

⌉⌋
from vertex (2, 0),

we cannot construct a path shorter than illustrated in Fig. 4.
This path contains exactly c+ 1 0-dimensional edges used for
changing the graph partition and c (∆−1)-dimensional edges
used for moving towards x in the fastest possible way. Thus,
D(W∆,n) ≥ 2c + 1 = 2

⌊
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2∆−2

⌉⌋
+ 1.

Theorem 4 (Broadcast time). 2
⌊

1
2

⌈
n−2

2∆−2

⌉⌋
+1 ≤ b(W∆,n) ≤⌈

n−2
2∆−2

⌉
+ ∆− 1.

Proof: The lower bound follows from the lower bound
on D(W∆,n) from Lemma 3), since obviously we will need
at least D(W∆,n) time units to inform a vertex at distance
D(W∆,n) from the broadcast originator.



Fig. 4. Schematic illustration of the paths. c =
⌊

1
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⌉⌋

To prove the upper bound, we present an algorithm for
broadcasting in W∆,n. The algorithm uses at most

⌈
n−2

2∆−2

⌉
+

∆− 1 time units.
By considering only 0 and (∆ − 1)-dimensional edges,

the Knödel graph can be schematically illustrated as in Fig.
4. Recall that the

⌈
n−2

2∆−2

⌉
expression represents the number

of partitions in Fig. 4. We note that each partition is a
W ′∆,2∆ graph. More precisely, we have

⌈
n−2

2∆−2

⌉
− 1 par-

titions of the form W ′∆,2∆ and one partition of the form
W ′

∆,n−(
⌈

n−2

2∆−2

⌉
−1)(2∆−1−1)−1

.

The broadcast algorithm for W∆,n consists of three stages.
In the first stage, we inform all the vertices with labels (1, 0)
and (2, 2∆−1−1) in all W ′ graphs except one or two farthest
W ′ graphs from the originator. In the second stage, we use
Lemma 2 to broadcast in parallel in all W ′ graphs. In the
third stage, all the vertices of the remaining one or two W ′

graphs will receive the message in just 1 or 2 time units from
neighboring W ′ graphs and the broadcast will be complete in
W∆,n.

We note that the vertices of W∆,n with original labels
y = (1, c(2∆−1 − 1)) and y = (2, n/2 − c(2∆−1 − 1))

where 0 ≤ c ≤
⌊

1
2

⌈
n−2

2∆−2

⌉⌋
after relabeling become the

vertices with label (1, 0) in W ′ partitions. Similarly, vertices
y = (2, c(2∆−1 − 1)) and y = (1, n/2− c(2∆−1 − 1)) where
0 ≤ c ≤

⌊
1
2

⌈
n−2

2∆−2

⌉⌋
become the vertices (2, 2∆−1 − 1) in

W ′ graphs. Therefore, we can use the paths from Fig. 4 in the
first stage of the broadcasting. All the vertices which need to
be informed in the first stage form a “cycle” of length

⌈
n−2

2∆−2

⌉
in W∆,n. Each “edge” of this cycle consists of one 0 and one
(∆− 1)-dimensional edge and it takes 2 time units to send a
message via such edge. It follows that we need 2

⌊
1
2

⌈
n−2

2∆−2

⌉⌋
to complete the first stage of broadcasting, i.e inform all the 
vertices of this “cycle” except one or two farthest ones from

dthe originator (1, 0). In order to have ⌈a goo upper bound on
b(W∆,n), we consider the parity of n−2

2∆−2

⌉
.

If
⌈

n−2
2∆−2

⌉
is odd when it will take 2

⌊
1
2

⌈
n−2

2∆−2

⌉⌋
− 1 =⌈

n−2
2∆−2

⌉
− 2 rounds to complete the first stage. After this, all

the W ′ partitions of the Knödel graph, except two farthest ones 
from the originator (1, 0), will have their vertices with label 
(1, 0) and (2, 2∆−1 − 1) informed. We note that by the end of 
the first stage, the first step of recursive broadcast algorithm 
from Lemma 4 will be complete. This means that we need only 
∆ − 1 additional rounds to inform all the vertices in W ′ graphs. 
Finally, in the third stage, in just 2 time units the final two 
uninformed W ′ graphs will receive the broadcast message from 
the neighboring and fully informed W ′. At first, the (∆−
1)-dimensional edges will be used to inform all vertices in one
of the partitions in the reaming 2 W ′ graphs. After this, the
0-dimensional edges will be used to inform all the vertices of
the second partition. It follows that b(W∆,n) ≤ (

⌈
n−2

2∆−2

⌉
−

2) + (∆− 1) + 2 =
⌈

n−2
2∆−2

⌉
+ ∆− 1.

If
⌈

n−2
2∆−2

⌉
 is  even  when  it  take

⌈
n−2

2∆−2

⌉
− 1 rounds

to complete the first s tage. We n ote t hat i n t his c ase a ll W ′ 
graphs except one, will have two vertices with labels (1, 0) and 
(2, 2∆−1 −1) informed. As in the previous case, we will need 
only ∆ − 1 time units to complete the broadcasting in W ′ 
graphs according to Lemma 4. In the third stage, in just one 
time unit, using (∆− 1)-dimensional edges we will inform all
the vertices of the remaining W ′ graph from neighboring W ′

graphs. Hence, in this case we have b(W∆,n) ≤ (
⌈

n−2
2∆−2

⌉
−

1) + (∆− 1) + 1 =
⌈

n−2
2∆−2

⌉
+ ∆− 1 as well.

Fig. 5 illustrates the broadcast algorithm of Theorem 4 in
W3,32 graph. For this case the number of partitions

⌈
n−2

2∆−2

⌉
=⌈

30
6

⌉
= 5 is odd and we deal with the first case of Theorem

4. The 0 and 2-dimensional edges divide the W3,32 graph
into 5 parts S1, S2, ..., S5. Each part is a W ′3,8 graph. The
goal of the first stage of the broadcast algorithm is to inform
two special vertices in S1, S2 and S5 partitions. These are the
vertices (1, 0) and (2, 3) in S1, (1, 3) and (2, 6) in S2, (2, 0)
and (1, 13) in S5. The bold edges are used to accomplish
this in 3 time units. After relabeling, these special vertices
are going to have labels (1, 0) and (2, 3) in W ′3,8 partitions.
During the second stage of the broadcasting, all these vertices
will broadcast in parallel in S1, S2 and S5 partitions as shown
in Fig. 6. From Lemma 2 follows that we need only 2 time
units to broadcast from originators (1, 0) and (2, 3) in W ′3,8
i.e. b({(1, 0), (2, 3)},W ′3,8) = 2. The broadcast scheme is
illustrated in Fig. 5. It follows that the second stage will be
complete in 2 time units. Finally, in 2 more time units, the
vertices of S2 and S5 will inform all the vertices of S3 and
S4. The total broadcast time will be b(W3,32) ≤ 3+2+2 = 7.

Fig. 7 illustrates the broadcast algorithm of Theorem 4 in
W3,26 graph. For this case the number of partitions

⌈
n−2

2∆−2

⌉
=⌈

24
6

⌉
= 4 is even and we deal with the second case of Theorem

4. The 0 and 2-dimensional edges divide the W3,32 graph into
4 parts S1, S2, S3, S4. Each part is a W ′3,8 graph. For this
case, the goal of the first stage of the broadcast algorithm is
to inform two special vertices in S1, S2 and S4 partitions. The
bold edges are used to accomplish this in 3 time units. As in
the case of W3,32, from Lemma 2 follows that we need only 2



Fig. 5. Broadcast scheme in W3,32.

Fig. 6. Two originator broadcast scheme in W ′3,8.

time units to inform all vertices in S1, S2 and S4 (see Fig. 6).
The broadcast scheme is illustrated in Fig. 7. Finally, in just
1 time unit, the vertices of S2 and S4, using 2-dimensional
edges, will inform all the vertices of S3. The total broadcast
time will be b(W3,26) ≤ 3 + 2 + 1 = 6.

Fig. 7. Broadcast scheme in W3,26.

III. SUMMARY

For the broadcast time of the Knödel graph W∆,n, we
showed that 2

⌊
1
2

⌈
n−2

2∆−2

⌉⌋
+1 ≤ b(W∆,n) ≤

⌈
n−2

2∆−2

⌉
+∆−1.

We believe that the presented lower bound, based only on
D(W∆,n), can be improved. In fact, we state as a conjecture
that b(W∆,n) =

⌈
n−2

2∆−2

⌉
+ ∆− 1.
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