On interval edge-colorings of complete tripartite graphs

Andrzej Grzesik

Jagiellonian University Krakow, Poland e-mail: Andrzej.Grzesik@uj.edu.pl

ABSTRACT

An edge-coloring of a graph G with colors $1, \ldots, t$ is an interval *t*-coloring if all colors are used, and the colors of edges incident to each vertex of G are distinct and form an interval of integers. A graph G is interval colorable if it has an interval *t*-coloring for some positive integer *t*. In this paper we prove that $K_{1,m,n}$ is interval colorable if and only if gcd(m+1, n+1) = 1, where gcd(m+1, n+1) is the greatest common divisor of m + 1 and n + 1.

Keywords

Edge-coloring, interval edge-coloring, complete multipartite graph, complete tripartite graph

1. INTRODUCTION

All graphs in this paper are finite, undirected and have no loops or multiple edges. Let V(G) and E(G) denote the sets of vertices and edges of a graph G, respectively. The degree of a vertex $v \in V(G)$ is denoted by d(v), the maximum degree of G by $\Delta(G)$ and the edge-chromatic number of G by $\chi'(G)$. The terms, notations and concepts that we do not define can be found in [16].

A proper edge-coloring of graph G is a coloring of the edges of G such that no two adjacent edges receive the same color. If α is a proper coloring of G and $v \in V(G)$, then $S(v, \alpha)$ (spectrum of a vertex v) denotes the set of colors of edges incident to v. A proper edge-coloring of a graph G with colors $1, \ldots, t$ is an interval t-coloring if all colors are used, and for any vertex v of G, the set $S(v, \alpha)$ is an interval of integers. A graph G is interval colorable if it has an interval t-coloring for some positive integer t. The set of all interval colorable graphs is denoted by \mathfrak{N} . For a graph $G \in \mathfrak{N}$, the least and the greatest values of t for which G has an interval t-coloring are denoted by w(G) and W(G), respectively.

The concept of interval edge-coloring was introduced by Asratian and Kamalian [3]. In [3, 4], they proved that if G is interval colorable, then $\chi'(G) = \Delta(G)$. Moreover, they also showed that if G is a triangle-free graph and $G \in \mathfrak{N}$, then $W(G) \leq |V(G)| - 1$. In [8], Kamalian investigated interval edge-colorings of complete bipartite graphs and trees. Later, Kamalian [9] showed that if G is a connected graph and $G \in \mathfrak{N}$, then $W(G) \leq 2|V(G)| - 3$. This upper bound was improved by Giaro, Kubale, Malafiejski in [7], where they proved that if $G (|V(G)| \geq 3)$ is a connected graph and $G \in \mathfrak{N}$, then $W(G) \leq 2|V(G)| - 4$. Recently, Kamalian and Petrosyan [10] showed that if G was a connected rHrant Khachatrian Yerevan State University Yerevan, Armenia e-mail: hrant@egern.net

regular graph $(|V(G)| \ge 2r + 2)$ and $G \in \mathfrak{N}$, then $W(G) \le 2|V(G)| - 5$. Interval edge-colorings of planar graphs were considered by Axenovich in [5], where she proved that if G is a connected planar graph and $G \in \mathfrak{N}$, then $W(G) \le \frac{11}{6}|V(G)|$. In [12], Petrosyan investigated interval colorings of complete graphs and n-dimensional cubes. In particular, he proved that if $n \le t \le \frac{n(n+1)}{2}$, then the *n*-dimensional cube Q_n has an interval *t*-coloring. Recently, Petrosyan, Khachatrian and Tananyan [14] showed that the *n*-dimensional cube Q_n has an interval *t*-coloring if and only if $n \le t \le \frac{n(n+1)}{2}$. In [15], Sevast'janov proved that it is an NP-complete problem to decide whether a bipartite graph has an interval coloring or not.

Interval edge-colorings of some special cases of complete multipartite graphs were first considered by Kamalian in [8], where he proved the following theorem.

Theorem 1. For any $m, n \in \mathbb{N}$, $K_{m,n} \in \mathfrak{N}$ and

1
$$w(K_{m,n}) = m + n - \operatorname{gcd}(m,n)$$

- **2** $W(K_{m,n}) = m + n 1$
- **3** if $w(K_{m,n}) \leq t \leq W(K_{m,n})$, then $K_{m,n}$ has an interval t-coloring.

Also, he showed that complete graphs were interval col-orable if and only if the number of vertices was even.

Moreover, for any $n \in \mathbb{N}$, $w(K_{2n}) = 2n - 1$. For a lower bound on $W(K_{2n})$, Kamalian obtained the following result:

Theorem 2. For any $n \in \mathbb{N}$, $W(K_{2n}) \geq 2n - 1 + \lfloor \log_2(2n-1) \rfloor$.

Later, Petrosyan [12] improved this lower bound for $W(K_{2n})$:

Theorem 3. If $n = p2^q$, where p is odd and q is non-negative, then

$$W(K_{2n}) \ge 4n - 2 - p - q.$$

In the same paper he also conjectured that this lower bound was the exact value of $W(K_{2n})$. He verified this conjecture for $n \leq 4$, but the conjecture was disproved by the second author in [11]. Another special case of complete multipartite graphs was considered by Feng and Huang in [6], where they proved the following:

Theorem 4. For any $n \in \mathbb{N}$, $K_{1,1,n} \in \mathfrak{N}$ if and only if n is even.

Recently, Petrosyan investigated interval edge-colorings of complete multipartite graphs. In particular, he proved [13] the following result:

Theorem 5. If $K_{n,...,n}$ is a complete balanced k-partite graph, then $K_{n,...,n} \in \mathfrak{N}$ if and only if nk is even. Moreover, if nk is even, then $w(K_{n,...,n}) = n(k-1)$ and $W(K_{n,...,n}) \geq (\frac{3}{2}k-1)n-1.$

In "Cycles and Colorings 212" workshop Petrosyan presented several conjectures on interval edge-colorings of complete multipartite graphs. In particular, he posed the following:

Conjecture 1. For any $m, n \in \mathbb{N}$, $K_{1,m,n} \in \mathfrak{N}$ if and only if gcd(m+1, n+1) = 1.

In this paper we prove this conjecture, which also generalizes Theorem 4.

2. MAIN RESULTS

Theorem 6. If gcd(m+1, n+1) = 1, then $K_{1,m,n}$ has an interval (m+n)-coloring.

To prove this result we color the subgraph isomorphic to $K_{m,n}$ using m + n - 1 colors. Next we construct an auxillary graph $H_{m,n}$ and show that if $H_{m,n}$ has a perfect matching, then it is possible to color the remaining edges of $K_{1,m,n}$ and obtain an interval edge-coloring. Finally, we show that $H_{m,n}$ has a perfect matching if m + 1 and n + 1 are coprime.

Theorem 7. If gcd(m+1, n+1) = 1 and t > m+n+1then $K_{1,m,n}$ does not have an interval t-coloring.

In the proof of the theorem we show that if there exist two edges with colors 1 and t ($t \ge m + n + 2$) then there exists a vertex with a non-interval spectrum. This proves the theorem.

Theorem 8. If gcd(m+1, n+1) > 1 then $K_{1,m,n}$ is not interval colorable.

We prove the theorem by contradiction. We suppose that gcd(m + 1, n + 1) = d > 1 and $K_{1,m,n}$ has an interval edge-coloring. For each vertex $w \in V(K_{1,m,n})$ we count the number of edges with color dx (for some $x \in \mathbb{Z}$) incident to w. The sum of these numbers yields an odd number. This contradiction proves the theorem.

The question whether $K_{1,m,n}$ has an interval (m+n+1)coloring when gcd(m+1, n+1) = 1, is still open.

REFERENCES

- A.S. Asratian, C.J. Casselgren, J. Vandenbussche, D.B. West, Proper path-factors and interval edge-coloring of (3,4)-biregular bigraphs, J. Graph Theory 61, 2009, 88-97.
- [2] A.S. Asratian, T.M.J. Denley, R. Haggkvist, Bipartite graphs and their applications, Cambridge Tracts in Mathematics, 131, Cambridge University Press, 1998.
- [3] A.S. Asratian, R.R. Kamalian, Interval colorings of edges of a multigraph, Appl. Math., 5, 1987, 25–34 (in Russian)
- [4] A.S. Asratian, R.R. Kamalian, Investigation on interval edge-colorings of graphs, J. Combin. Theory Ser. B, 62, 1994, 34–43
- [5] M.A. Axenovich, On interval colorings of planar graphs, Congr. Numer., 159, 2002, 77–94
- [6] Y. Feng, Q. Huang, Consecutive edge-coloring of the generalized θ-graph, Discrete Appl. Math., 155, 2007, 2321–2327.
- [7] K. Giaro, M. Kubale, M. Malafiejski, Consecutive colorings of the edges of general graphs, Discrete Math., 236, 2001, 131–143
- [8] R.R. Kamalian, Interval colorings of complete bipartite graphs and trees, preprint, Comp. Cen. of Acad. Sci. of Armenian SSR, Erevan, 1989 (in Russian)
- [9] R.R. Kamalian, Interval edge colorings of graphs, Doctoral Thesis, Novosibirsk, 1990
- [10] R.R. Kamalian, P.A. Petrosyan, A note on interval edge-colorings of graphs, Mathematical problems of computer science, 36, 2012, 13–16
- [11] H. Khachatrian, Investigation on interval edge-colorings of Cartesian products of graphs, Yerevan State University, BS thesis, 2012, 36p.
- [12] P.A. Petrosyan, Interval edge-colorings of complete graphs and *n*-dimensional cubes, Discrete Math. 310, 2010, 1580–1587.
- P.A. Petrosyan, Interval colorings of complete balanced multipartite graphs, 2012, arXiv:1211.5311
- [14] P.A. Petrosyan, H.H. Khachatrian, H.G. Tananyan, Interval edge-colorings of Cartesian products of graphs I, Discuss. Math. Graph Theory 33(3), 2013, 613–632.
- [15] S.V. Sevast'janov, Interval colorability of the edges of a bipartite graph, Metody Diskret. Analiza 50, 1990, 61–72 (in Russian).
- [16] D.B. West, Introduction to Graph Theory, Prentice-Hall, New Jersey, 1996.