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ABSTRACT 
The development of hamiltonian graph theory has 
undergone a natural growth and evolution. In the last 30-35 
years, radical turnings occur in this area: from simplicity to 
complexity, from gradual small changes (more than 98-
99% of all developments) to much bigger changes, from 
particular values to parameters. In this paper we try to 
reveal these turnings and specify their basis by focusing 
only on sharp results. For this purpose, we classify the 
basic research objects (Hamilton cycle, longest cycle, 
dominating cycle, and so on) of the area by their 
complexity levels, as well as the basic research tools (the 
number of edges, minimum degree, connectivity, 
toughness, and so on) having certain impact on research 
objects. The turnings in hamiltonian graph theory are 
related to generalized Hamilton cycles (including Hamilton 
and dominating cycles as special cases), vertex 
connectivity invariant, binding number, independence 
number and structures outside of cycles. The results related 
to generalized Hamilton cycles and structures outside of 
cycles are exceptionally due to the author. The most 
important results related to connectivity are also due to the 
author.  
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1. INTRODUCTION
Among various research objects in hamiltonian graph 
theory, Hamilton cycle is a starting point introduced by 
Kirkman (1855) and Hamilton (1856), independently. A 
Hamilton cycle of a graph is a cycle which passes through 
every vertex of the graph exactly once, and a graph is 
hamiltonian if it contains a Hamilton cycle. Classic 
hamiltonian problem; determining when a graph contains a 
Hamilton cycle, is one of the most central notions in graph 
theory and is one of the most attractive and most 
investigated problems among NP-complete problems.  
     The study of Hamilton cycles has been fueled also by 
practical applications and by the issue of complexity. In 
complexity theory, P denotes the set of polynomially 
solvable problems and NP denotes the set of 
nondeterministic polynomially solvable problems.  

P versus NP problem: Does P=NP? (millennium prize 
problem). 

A longest cycle is the next research object in hamiltonian 
graph theory, extending the notion of Hamilton cycle for a 
special case when graph is nonhamiltonian. Longest cycle 
problem; determining when a graph contains a cycle of 
length at least a given number, contains the classic 
hamiltonian problem as a special case. The main product of 
investigations concerning longest cycle problem consists of 

various lower bounds for the circumference (the length of a 
longest cycle). 
     Dominating cycle is another extension of Hamilton 
cycle, becoming the third important research object in the 
area. By the definition, a cycle C of a graph G is said to be 
a dominating cycle if G\C is edgeless.   

Furthermore, PDλ  and CDλ -cycles are introduced for

the purpose to include each cycle of a graph for appropriate 

λ , since Hamilton and dominating cycles do not exhaust 

all possible kinds of cycles in a graph. For a given integer 

{ }0,1,...λ ∈ , a cycle C in a graph G is called  PDλ -cycle

if every path in G of length at least λ  has a vertex in 

common with C. The vertices and edges in a graph can be 
considered as cycles of lengths 1 and 2, respectively. For a 

given integer { }1,2,...λ ∈ , a cycle C in G is called CDλ -

cycle if every cycle in G of length at least λ  has a vertex 

in common with C. In particular, 0PD  and 1CD -cycles

are Hamilton cycles. Furthermore, 1PD  and 2CD -cycles

are dominating cycles. PDλ  and CDλ -cycles can be

considered as missing elements in the list of the main 

research objects. By the definition, the structures of PDλ  

and CDλ -cycles gradually become more complicated.

     In sum, we have the following basic research objects in 
Hamiltonian graph theory. 

The basic research objects: longest cycle; PDλ  and 

CDλ -cycles, including Hamilton and dominating cycles as 

special cases. 
     Further developments in the area need the following 
additional elements. 
Additional research objects: shortest cycle; arbitrary 
cycles; 2-factors; r-ordered Hamilton cycles; cycles 
containing specified elements: vertices, independent edges, 
disjoint paths, combination of paths and vertices (linear 
forests); and so on.   
Noncyclic research objects: Hamilton path; longest path; 
spanning threes with minimum number of leafs. 
     Now we turn to research tools – graph characteristics 
having certain impact on research objects.  
The basic research tools: the number of edges; minimum 
degree; connectivity; structures outside of cycles; binding 
number; independence number; toughness; forbidden 
subgraphs.  
Advanced research tools: degree sequences, degree sums, 
neighborhood unions, generalized degrees, and so on.  
The main goal of hamiltonian graph theory: study of 
research objects by means of research tools, involving 
them into certain relations in forms of particular values 
(first stage) or parameters (last stage). 



Simple research tools: the number of edges, minimum 
degree and its various extensions of local nature; they can 
be tested by simple algorithms.  
Complicated research tools: connectivity invariant and 
the binding number; they can be tested in polynomial time. 
Hard research tools: independence number, toughness, 
structures outside of cycles and forbidden subgraphs; there 
are not known polynomial time algorithms for their testing.  
Dynamics of developments in the area. The development 
of hamiltonian graph theory has undergone a natural 
growth and evolution. In the last 30-35 years, radical 
turnings occur in this area.   
Slow developments: gradual small changes - more than 
98-99% of all developments. This is a stage for experience 
accumulation and proof technique improvements. Slow 
developments are related to simple research tools (the 
number of edges, minimum degree and its various 
extensions), as well as complicated tools for special cases 
(2-connectivity, 3-connectivity, 1-toughness, H-free 
graphs, R,H-free graphs, and so on). 
Turnings: sharp changes in relatively short periods of time 
from simplicity to complexity, from superficial 
observations to global observations, from gradual small 
changes to much bigger changes, from particular values to 
parameters.      
     The first group of turnings is related to research objects 
of the area (generalized Hamilton cycles, including 
Hamilton and dominating cycles as special cases) whose 
structures gradually become more complicated and further 
developments need radical revision of research approaches. 
The second group of turnings is related to research tools 
having different impact on research objects according to 
their three qualitative different complexity levels.  
    In this paper we try to reveal radical turnings in the area 
and specify their basis by focusing only on sharp results. 
These turnings are based on generalized Hamilton cycles, 
vertex connectivity invariant, binding number, 
independence number and structures outside of cycles. The 
results related to generalized Hamilton cycles and 
structures outside of cycles exceptionally are due to the 
author. The most important results related to connectivity 
are also due to the author. For the binding number a single 
result is known (Woodall [28]). 

2. NOTATIONS AND DEFINITIONS
We consider only finite undirected graph without loops and 
multiple edges. A good reference for undefined terms is 
[2].  
     Let G be a graph with vertex set V(G) and edge set 
E(G). Throughout the paper, each vertex and edge of G can 
be interpreted as cycles of lengths 1 and 2, respectively. 

For a given longest cycle C in G, we denote by p  and c  

the lengths of a longest path and a longest cycle in G\C, 
respectively.  

 We use , , ,n cδ α  to denote the order (the number of 

vertices), minimum degree, independence number 
(maximum number of mutually nonadjacent vertices) and 
the circumference (the length of a longest cycle) of G. The 
connectivity κ  is defined to be the minimum number of 
vertices whose removal disconnects G or reduces it to a 
single vertex K1. A graph is called s-connected if s κ≤ . 

Let s(G) denotes the number of components of G. A graph 

G is t-tough if ( )\S ts G S≥  for every subset ( )S V G⊂

with ( )\ 1s G S >  The toughness of G, denoted by τ , is

the maximum value of t for which G is t-tough (taking 

( )nKτ = ∞  for all 1n ≥ ).  The binding number ( )b G  is

defined as follows: 

( )
( )

( )min : ,
X

N X
b G X V G

X

  
= ∅ ≠ ⊆ 

  

 

where ( ) ( ).
x X

N X N x
∈

= ∪  Put 

( ) { }1 2

1

min | , ,..., .

t

t i t

i

d v v v v is independentσ

=

  
=  

  
∑  

3. ON BASIC RESEARCH TOOLS
Connectivity. By many graph theorists, connectivity is at 
the heart of all path and cycle questions. 2-connectivity is a 
necessary condition for a graph to be hamiltonian and 
occurs in majority of hamiltonian results as one of the main 
conditions. Connectivity can be tested in polynomial time 
[8].  
Structures outside of cycles. Since 1952, the structures 
outside of cycles are the main tools using to construct long 
cycles and estimate their lengths. In final results, they are 
mainly invisible. The first result involving structures 
outside of cycles in forms of parameters appeared in 1998. 

 The first idea, that arises when we try to construct long 

cycles in a graph G , is the following: choose an initial 

cycle 1C   in G  and try to replace it by a longer cycle by 

using 1\G C -structures (long paths, long cycles and so on). 

If the degrees of vertices and the connectivity are large 
enough then we have a good chance to find cycles longer 

than 1C  by replacing some segments of 1C  with some 

paths passing through 1\G C . If we have found such cycle 

2C  then we can repeat the same algorithm for 2C . 

Actually, this iterative algorithm is fallen in the base of all 
hamiltonian results.  
Binding number. By the definition, the binding number 

( )b G  is a ratio of two different graph characteristics. The

condition ( ) 3 / 2b G ≥  is similar to relations between two 

different parameters such as / 2nδ ≥  and κ α≥ , having 

much more impact on cycle structures. The binding 
number can be tested in polynomial time [6]. 
Toughness. The most challenging conjecture in 
hamiltonian graph theory is still open: is there a finite 

constant 0t  such that every 0t -tough graph is hamiltonian 

(Chvátal [5]). The problem of determining of the 
complexity of recognizing t –tough graphs for any positive 

rational number t  is NP-hard [1]. There are no sharp 

results involving τ  as a parameter. A number of sharp 

results are known for 1-tough and ( )1 ε+ -tough graphs, 

slightly improving some well-known results by replacing 

the connectivity conditions with 1-tough or ( )1 ε+ -tough 

conditions.   
Independence number. Independence number α  occurs 

mainly in a number of relations of the type δ α≥  and 

κ α≥ , where the main performers are δ  and κ , repulsing 

the role of α  to the second plan.  

Forbidden subgraphs. Forbidden subgraphs can 
essentially change the structure of a graph. For example, 

2P -free graphs (graphs having no 2P  as an induced 

subgraph) are empty graphs, while the connected 

components of 3P -free graphs are complete graphs. 



 It is known that if 2-connected graph G  is R -free then 

G  is hamiltonian if and only if 3R P= . The second

nontrivial sharp result states that if 2-connected graph G

is ,R S -free then G  is hamiltonian if and only if 1,3R K=

and S  belongs to a well defined class of graphs. A similar 

result is developed for forbidden triples with much more 

complicated description of graphs. So, 1 2, ,..., mH H H -free 

graphs are completely studied only for m=1,2,3. 
     The second approach is based on a combination of 
forbidden subgraphs with other types of conditions 
involving minimum degree, connectivity, toughness and so 

on. Similar results are established for 1,3K -free graphs, but 

they are far from to be best possible.  

4. CARDINAL TURNINGS
The first result involving connectivity κ  and independence 

number α  as parameters, was established in 1972.  

Theorem 1 (Chvátal and Erdös, 1972) [4] 
Every graph is hamiltonian if .α κ≤  

The proof of Theorem 1 is quite simple and is used in 
many other proofs as standard arguments.  
     The long cycle’s version of Theorem 1 was established 
in 1994. 

Theorem 2 (Kouider, 1994) [13]  

In every graph, / /c n α κ≥    .

The next theorem includes connectivity as a parameter. 

Theorem 3 (Bondy, 1980) [3] 
Every s-connected graph is Hamiltonian if 
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The following two theorems include independence number 
as a parameter. 

Theorem 4 (Nash-Williams, 1971) [15] 

Every 2-connected graph with ( ){ }max 2 / 3,nδ α≥ +  is

hamiltonian. 

Theorem 5 (Jung, 1978) [11] 

Every 3-connected graph with δ α≥  either is hamiltonian 

or 3 3.c δ≥ −  

In 1981, connectivity appeared with minimum degree δ . 

Theorem 6 (Nikoghosyan, 1981) [10], [17], [18]  

Every 2-connected graph with ( ) / 3nδ κ≥ +  is

hamiltonian. 

Theorem 7 (Nikoghosyan, 1981) [17], [18]  
Every 3-connected graph either is hamiltonian or 

3 .c δ κ≥ −  

Similar theorems were developed for dominating cycles. 

Theorem 8 (Lu, Liu and Tian, 2005) [14]  
All longest cycles in 3-connected graphs are dominating if 

( )2 / 4.nδ κ≥ +

Theorem 9 (Nikoghosyan, 2009) [26]  
Every 4-connected graph either has a dominating cycle or 

4 2 .c δ κ≥ −  

Using the additional condition δ α≥ , the minimum degree 

condition in Theorem 6 can be essentially relaxed and the 
lower bound in Theorem 7 can be essentially improved. 

Theorem 10 (Nikoghosyan, 1984) [19], [21] 
Every 3-connected graph is hamiltonian if 

( ){ }max 2 / 4, .nδ κ α≥ +

Theorem 11 (Nikoghosyan, 1985) [20]  

Every 4-connected graph with δ α≥  either is hamiltonian 

or 4 2 .c δ κ≥ −  

Theorem 8 is sharp only for 3κ = . Theorem 9 is sharp 

only for 4κ = . The final versions of Theorems 8 and 9 are 
sharp for each value of κ . 

Theorem 12 (Yamashita, 2008) [29]  
All longest cycles in a 3-connected graph are dominating if 

( )3 / 4.nδ κ≥ + +

Theorem 13 (Nikoghosyan and Nikoghosyan, 2011) [16]  
In every 4-connected graph, either all longest cycles are 

dominating or 4 4.c δ κ≥ − −  

Theorem 8 is sharp for 3κ = , and Theorem 9 is sharp for 

4κ = . The final versions of Theorems 10 and 11 are sharp 
for each κ .  

Theorem 14 (Yamashita, 2008) [29] 
Every 3-connected graph is hamiltonian if 

( ){ }max 3 / 4, .nδ κ α≥ + + .

Theorem 15 (Nikoghosyan and Nikoghosyan, 2011) [16]  

Every 4-connected graph with δ α≥  either is hamiltonian 

or 4 4.c δ κ≥ − −  

In the next theorem, connectivity appears in forms of 

parameter λ . When 1λ = , we have a well-known theorem 

by Nash-Williams [15]. 

Theorem 16 (Fraisse, 1986) [9] 

Let G  be a ( )1λ + -connected graph, where λ  is a

positive integer. Then G  is hamiltonian if 
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The long cycles version of Theorem 16 contains Jung’s 

[11] theorem as a special case when 1λ = . 

Theorem 17 (Nikoghosyan, 2009) [25] 

If G  is a ( )2λ + -connected graph with 1δ α λ≥ + −  for

some positive integer λ  then G  either is hamiltonian or 

( )( )2 .c λ δ λ≥ + −

The next two theorems contain Dirac’s two well-known 

theorems [7] concerning Hamilton cycles when 1λ = , and 

two theorems by Nash-Williams [15] and Jung [12] 

concerning dominating cycles when 2λ = .  



Theorem 18 (Nikoghosyan, 2009) [25]  

Let G  be a λ -connected graph for some positive integer 

λ . Then all longest cycles in G  are 
}1,min{ +−λδλCD -cycles 

if ( ) ( )2 / 1 2.nδ λ λ≥ + + + −

Theorem 19 (Nikoghosyan, 2009) [25] 

If G  is a ( )1λ + -connected graph for some positive

integer λ  then either all longest cycles in G  are 

},min{ λδλ −CD -cycles or ( )( )1 1 .c λ δ λ≥ + − +

The next three theorems are the first results involving p

and c  as parameters. 

Theorem 20 (Nikoghosyan, 1998) [22], [27] 

If C is a longest cycle in a graph then 

( )( )2C p pδ≥ + − .

Theorem 21 (Nikoghosyan, 2000) [23], [27] 

If C is a longest cycle in a graph then 

( )( )1 1C c cδ≥ + − + :

Theorem 22 (Nikoghosyan, 2000) [24]  

Let G  be a 2-connected graph and let C  be a longest 

cycle in G . If c κ≥  then 

( )
( )

1
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The last theorem includes ( )b G  as a parameter.

Theorem 23 (Woodall, 1973) [28] 

Every graph G with ( ) 3 / 2b G ≥  is hamiltonian.
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