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ABSTRACT 
It is known that MINLA of transitive oriented, bipartite graphs is 

NP-complete [1].  In this article we present an approximation 

algorithm for MINLA of transitive oriented graphs that gives an 

optimal linear arrangement for the class of so called bipartite Г-

oriented graphs, which is a subset of the transitive oriented graphs.  
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1. Introduction
The problem of minimum linear arrangement (MINLA) of oriented 

graphs is defined as follows: 

Problem: For a given oriented graph        construct such one to 

one function               that the following two conditions are 

satisfied: 
                        ( ) 

       ∑              

        

                        

The condition (1) is also called an acceptability condition, and any 

function which satisfies the condition (1) is also called a labeling 

function for graph  . It is known that MINLA of oriented graphs is 

NP-complete [2] and it remains NP-complete for transitive oriented, 

bipartite graphs [1]. We are going to propose an approximation 

algorithm for MINLA of transitive oriented graphs which gives an 

optimal labeling for the subset of transitive oriented, bipartite 

graphs. 

2. Preliminaries
Let        be an oriented acyclic graph without loops and multiple 

edges. For each       let’s define sets of ancestors and 

predecessors as follows: 

  

                       and   

                        

It is not hard to see, that in the expression (2), for each         

the label       appears with the coefficient +1 exactly    
   times and 

with the coefficient -1 exactly    
   times. So, each vertex         

with the label       induces a length equal to    
         |  

 |        

and the overall length for the function   is equal to the sum of the 

lengths induced by each vertex: 

       ∑                 
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Let’s define another function           as follows: 

         
    |  

 | for each        

Based on the previous definition, the right part of the equation 

(3) can be transformed as follows:

∑                 

           

  ∑           

       

  

Without loss of generality we can assume that the indexation of the 

vertices of the graph   satisfies the following condition :

                      

It is known that for arbitrary sequences              and 

           and for any permutation 

                    , the following inequality holds: 

∑     

  

   

 ∑         

  

   

∑         

  

   

In our case we have 2 numerical sequences F and C with the length 

       where      and   =                 , and it 

is required to find such                          that 

 (     )                 

and 

∑               

    

   

   

So the lower bound of the minimum value of the expression (4) can be 

reached on the permutation 

                               



and equals to 

∑             

    

   

  

It is not difficult to see that the permutation (5) not always satisfies 

the condition (1) but the main idea that we can get from this is the 

following: 

Vertices with bigger values of the function c should get smaller labels. 

3. The Algorithm
Let us define a polynomial labeling algorithm for transitive oriented 

graphs which uses the idea mentioned above, and generates a 

labeling that satisfies the condition (1). 

Labeling Algorithm 

Input: A transitive oriented graph        with      

              

Output:                         , which satisfies the 

acceptability condition. 

Step 1. Calculate values of the function   for each   , sort them by 

the  increasing order      
       

          
  and assign 

infinite labels to all vertices of  . 

Step 2. Iteratively, for        , assign the label   to the vertex 

    
          

    , and start the label decreasing procedure on the 

substep 2.1 

Substep 2.1 While there is a vertex   , such that  (   
)          

and       
      ,    (swapping condition),       

         
    

and               + 1. 

Theorem 1. 

For an arbitrary transitive oriented graph  , the output of Labeling 
Algorithm  satisfies  the condition (1). 

Proof. 

Let   be the function constructed by Labeling  Algorithm applied to 

the graph        Note that relative positions of vertices 

   
    

       
 , labeled during  -th iteration of the step 2, will not 

change till the end of the algorithm , and let us prove the theorem 

by contradiction, supposing that                for which 

           . Let us define by        the set of edges            
    , for which the acceptability condition is violated and select in 

       such an edge       , for which 

                 (  )    (  ) (     )           

There are 2 possible cases. 

Case 1: The vertex  has been labeled by the step 2 before the 

vertex  . Suppose   has got its label at  -th iteration of the step 2. It 

means that at the beginning of the substep 2.1         and 

      , where    . Since relative positions of   and   will not 

change after k-th iteration , then      becomes smaller than      

during  -th iteration , which means that a situation would arise 

where                   and on the substep 2.1 the labels of these 

vertices should be swapped, which is impossible since   and   do not 

satisfy the swapping condition. Thus, we have obtained a 

contradiction in this case. 

Case 2: The vertex   has been labeled by the step 2 after the vertex 

   Suppose   has got its label at  -th iteration of the step 2. It is clear 

that during   -th iteration of the substep 2.1 and after it     

remains greater than     . It means that during the execution of the 

substep 2.1 a vertex        was considered, such that      

          and             , otherwise the substep 2.1 would 

decrease the label of   and finally we would have          . 

Since we have that             and  is a transitive oriented 

graph, then it follows from             and             that 

(           . Since till the end of the algorithm the relative 

positions of the vertices           do not change we will have that 

              and since           , we will have that 

            . Recall that we have selected               under 

the condition 

                 (  )    (  ) (     )          

but in this case  we have             ,  and, consequently, 

      (  )    (  ) (     )                     

which is a contradiction, too. 

So we have proved that the output of Labeling Algorithm satisfies 

the condition (1).  

The theorem is proved. 

Remark 1. It is easy to see that the complexity of the Labeling 
Algorithm is        . 

Remark 2. Note (Fig.1),  that for general oriented graphs the 

Labeling Algorithm can give a labeling that does not satisfy the 

condition (1). 

Fig. 1 



3.1 Optimality of Labeling Algorithm for 

Г-oriented Graphs 

Let us define the subclass of Г-oriented graphs, which is a subset of

the set of transitive oriented graphs. 

Definition. 

An oriented acyclic graph        is called Г-oriented if for any

          either  
   

  or  
   

 . 

It is easy to see that any Г-oriented graph is transitive oriented and,

therefore, our algorithm is applicable for these graphs. It is known 

[3] that for any Г-oriented bipartite graph          with       

              ,               , where |   

 |  |   

 |    

|  
 

 
|  |  

 
  
|      

 
             

 
 
  (Fig 2) , there exists an optimal 

linear arrangement of the following kind: 
                            

Fig 2. General representation of  Г-oriented  bipartite graphs

Theorem  2. 

Labeling Algorithm gives an optimal linear labeling for any Г-
oriented, bipartite graph         . 

Proof. 

At first, the step 1 sorts vertices based on the definition of the 

function c as follows: 

                                           

Taking into account that there is no edge between vertices of X and 

that the swapping condition always holds, we can conclude that for 

vertices from X we will have the following labels assigned to  

            . 

                    

Since                for each      , then  n =             . Since 

there is no edge between vertices of   , then at the end of the 

algorithm we will have the following arrangement: 

                            

which is the optimal arrangement for  . 

The theorem is proved. 

So we have presented the idea to approximate MINLA of 

transitive oriented graphs and a polynomial algorithm based on that 

idea which gives an optimal solution for the subset of transitive 

oriented bipartite graphs. It is an open question whether MINLA is 

NP-complete for Г-oriented graphs, and if there are other subclasses 

of transitive oriented graphs, for which MINLA can be solved in a 

polynomial time.  

4. ACKNOWLEDGEMENT

The author thanks S. Ye. Markosyan and R. R. Kamalian for their 

attention to this work. 

REFERENCES 

1. H.E. Sargsyan, S.Ye. Markosyan. Minimum linear

arrangement of the transitive oriented, bipartite Graphs,

Proceedings of the Yerevan State University, Physical and

Mathematical Sciences, 2012 № 2, p. 50–54

2. Even S., Shiloah Y. NP-Completeness of Several

Arrangement Problems. Report 43.Dept. of   Computer

Science. Israel, Haifa: Technion, 1975

3. L. Rafayelyan, The Minimum Linear Arrangement

Problem on Bipartite Г–oriented  graphs,  Mathematical

Problems of Computer Science 32, 23-26, 2009




