
Simulation-based verification of implementations of 
incompletely specified Boolean functions 

Liudmila Cheremisinova 
United Institute of Informatics 
Problems of NAS of Belarus 

Minsk, Belarus 
e-mail: cld@newman.bas-net.by 

ABSTRACT 
The problem under discussion is to check whether a given 
system of incompletely specified Boolean functions is 
implemented by a logical description with functional 
indeterminacy that is represented by a system of connected 
blocks each of which is specified by a system of completely 
or incompletely specified Boolean functions. Simulation-
based verification methods are considered which simulate 
the multi-block structure on the domain of the system of 
Boolean functions. The results of investigation of 
verification methods based on simulation of combinational 
circuits are given for the case of input stimuli represented by 
ternary vectors. 
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1. INTRODUCTION
It is known currently, verification takes more than 70% 
efforts spent in automated electronic design [1]. So, 
verification becomes more and more important aspect of the 
design flow due to the importance of design correctness with 
growing VLSI design in complexity. The objective of 
verification is to ensure that implemented and specified 
behaviors are the same. In a typical scenario, there are two 
structurally similar circuit implementations of the same 
device obtained in the process of the design, and the problem 
is to prove their functional equivalence. 
Simulation has been the main verification tool in computer-
aided design systems for microelectronic devices until 
recently due to the simplicity of its realization and the 
variability of its implementation time. This approach implies 
the input of binary signals into the circuit being simulated, 
their promotion through the circuit, which corresponds to the 
activation of its outputs; and the examination of the results of 
the simulation with expected values. However, in practice, 
the descriptions being compared using simulation may only 
be analyzed partially, i.e., on a certain subset of inputs, and 
the completeness of the verification may not be ensured by 
simulation in the general case. 
In recent decades, formal verification methods that aim to 
prove the functional identity of projects in a formal way have 
been developed rapidly as an alternative to simulation-based 
verification. Methods of verification based on its reduction 
to a problem of the satisfiability checking of a 
conjunctive normal form (CNF) [1, 2], which makes it 
possible to ensure the completeness of the verification, in 
contrast to simulation methods, are the most advanced. 
However, the dimensions of the CNF generated in the 
process of solving real-world problems often exceed the 
capabilities of the available SAT solvers, and software 
tools of formal verification are at the moment unable to 

to completely eliminate the necessity of using 
simulation-based verification tools, which provide more 
flexible adjustment to the dimensions of the problems 
being solved and de facto remain the main testing tool in 
design organizations. 

In the paper, the verification task is examined for the 
more general case, when the desired functionality of the 
system under design is incompletely specified. Such a case 
usually occurs on early stages of designing when 
assignments to primary inputs of designed device exist 
which will never arise during a normal mode of the device 
usage. Thus, when hardware implementing this device, 
its outputs in response of these inputs may be arbitrary 
specified. In this case, verification methodologies may 
consider only possible input scenarios to the design under 
verification and verify that every possible output signal of 
the implemented behavior has its intended value. 

We consider the verification problem for the case, 
when the desired incompletely specified functionality is 
given in the form of a system of incompletely 
specified Boolean functions (ISFs) and the compared 
functional description represents a multi-block structure 
with blocks specified by systems of completely or 
incompletely specified functions. A special case of such 
a multi-block structure is a combinational network 
or an ISF system. There is one-to-one correspondence 
between the arguments and functions of both compared 
descriptions. ISFs are specified on intervals (cubes) of 
values of Boolean input variables, and the intervals 
are large enough. 
2. THE SUGGESTED APPROACH TO
VERIFICATION 
An ISF system F(x) = { f1(x), f2(x), …, fm(x) } (where x = (x1, 
x2, …, xn) is a vector) is represented as a mapping of 
n-dimensional Boolean space Bn of vectors xi into 
m-dimensional space {0,1,–}m of vectors fj, where the 
symbol “–” denotes don’t-care condition. An ISF is specified 
by off-set Uf

0, on-set Uf
1 and dc-set Uf

dc as subsets of Bn 
(Uf

1 ∪ Uf
0 ∪ Uf

dc = Bn ). Let us specify a system F(x) as a set 
IF of multiple-output cubes (u, t ) each of which is a pair of 
ternary vectors u and t (or conjunctions) of sizes n and m. 
Here u is a cube in Bn or a set of minterms bi (elements of 
Bn), and t is a ternary vector of values of functions for the 
cube u.  

A system F(x) of ISFs given by the set IF of multiple-output 
cubes (ui, ti

 ) can be represented in matrix form by a pair of 
ternary matrices U and T (Fig. 1,a) or a pair of Boolean B 
and ternary T matrices (Fig. 1,b) of the same cardinalities. 
For example, ISF system (Fig. 1,a) represented in matrix 



form by ternary matrices U, T is specified by the set IF = 
{(⎯x1 x2⎯x3,⎯f1), (⎯x1⎯x2⎯x3

 x4
 x5, f2

 f3), ...}. 

U T B T 
x1x2x3x4x5 
0 1 0 – – 
0 0 0 1 1 
1 1 – 0 0 
1 1 1 – 1 
0 – 1 0 1 
1 0 0 1 1 
1 – 1 1 0 
1 0 0 0 – 

f1f2f3 
0 – – 
– 1 1
1 – 0 
1 0 – 
0 – 0 
1 1 – 
– 0 0
1 1 – 

x1x2x3x4x5 
0 1 0 1 0 
0 0 0 1 1 
1 1 0 0 0 
1 1 1 1 1 
0 1 0 0 0 
1 0 0 1 1 
0 0 0 1 1 
1 1 1 1 0 
0 1 0 0 1 
1 1 1 0 1 
1 0 0 0 1 

f1f2f3

0 – – 
– – 1 
0 1 0 
– 1 –
0 – 0 
1 0 1 
1 0 1 
0 1 – 
0 – 0 
– 1 –
1 – 0 

a)   b)
Figure 1. Two forms of ISF system representation 

In the paper, the task under consideration is as follows. 
Given an ISF system in a matrix form and a structure 
of the connected blocks. The task is to check whether the 
second form of functional representation implements the 
first one. We consider two cases: 1) the structure has no 
indeterminacy and each its block is represented by the 
system of conjunctive normal forms (Fig. 2); 2) the 
structure has indeterminacy and each its block is represented 
by ISF system (Fig. 3). 

Figure 2. Three-block structure 

Figure 3. Three-block structure with indeterminacy 

In the first case, the structure can be easily transformed into 
a multi-level combinational network which consists of NOT, 
AND and OR gates. Before simulation we fulfill levelization 
of the network in such a manner that before evaluating a 
gate, all its fan-ins would have been evaluated. 

Logic simulation is the most widely used technique for 
verifying the correctness of digital integrated circuits in 
industry because of its scalability and predictable run-time 
behavior. This technique is based on stimulating inputs of 
the circuit with binary signal values that propagate in the 
circuit leading to a corresponding activation of the outputs, 
whose values must be consistent with the expected ones. 

We investigate three approaches to solve the considered task: 
1) binary simulation of a combinational circuit; 2) ternary
simulation of a combinational circuit; 3) simulation of a 
multi-block structure with indeterminacy. The proposed 
verification methods are based on parallel simulation of the 
given multi-block structure (with or without indeterminacy) 
on the input patterns specified by the set IF of multiple-
output minterms or cubes of the compared ISF system. The 
multi-block structure is simulated under all possible patterns 
(corresponding to the elements of the domain of the system 
F(x)) simultaneously. The simulation methods are based on 
fast computations over long binary and/or ternary vectors. 

3. BINARY SIMULATION BASED
VERIFICATION 
The binary simulation supposes that the verified system is 
specified by a set IF of multiple-output minterms (bi, ti

 ) and 
includes the following steps:  

1) the sequential input of variable values corresponding to bi,
(bi, ti

 ) ∈ IF, into the circuit; 
2) the computation of the signal values at the outputs of the
circuit’s gates and finally at the circuit’s outputs; 
3) the comparison of the circuit’s responses yj(bi) with values
ti

  of functions of the system F. 

The ISF system F specified by the set IF of multiple-output 
intervals is implementable by a circuit if the condition of 
covering the Boolean vector y(bi) by a ternary vector ti is 
fulfilled for each (bi, ti

 ) ∈ IF. 

The parallel simulation [3] of a multiple output logical 
circuit is carried out simultaneously on all the binary 
minterms from IF, i.e. a state of each primary input and node 
of the circuit is represented by a Boolean vector of the 
size | IF

 |. So, at the end of simulation we have m vectors yj 
(each of the size | IF

 |) and the only thing remaining 
is the orthogonality checking of all the pairs of vectors: yj 
and the ternary vector t j corresponding to the j-th 
column of the matrix T. The implementability of the 
system by the combinational circuit takes place if all 
the pairs of vectors are not orthogonal. Otherwise, the 
element responsible for the violation of the 
implementability condition may be identified by reverse 
tracing of the logical circuit. 

4. TERNARY SIMULATION BASED
VERIFICATION 
In general case the initial ISF system is specified on 
intervals, i.e. it is represented by a pair of ternary matrices 
U and T and the simulation based verification can be carried 
out by one of the ways: 1) by transforming the pair of 
ternary matrices U and T into the pair of Boolean B and 
ternary T matrices to have only minterms in the first 
matrix; 2) by solving the task directly using the interval 
representation. 
The first way allows a binary simulation of the network 
under test. But when the transition to the representation of 
the system F on the minterms occurs, the multiple-output 
cube (ui, ti)  IF generates 2n-k multiple-output minterms (bij, 
ti), 



where k is the rank of the interval ui, and bij is the minterm 
of variable values covered by the interval ui. When multiple-
output cubes are “expanded” and the obtained multiple-
output minterms with equal output parts are grouped 
together, each set of the multiple-output minterms (b, ti) 
(with the same input part b) is substituted by one multiple-
output minterm (b, t), where t is covered by each of the 
output parts ti of these minterms. 

Thus, the ternary matrix U is transformed into the Boolean 
matrix B, which assigns minterms of values of input 
variables of the system F, and the matrix T is transformed 
into the matrix Tb, which assigns values of ISF on these 
minterms. For example, the domain of definition of the 
system F(x) (Fig. 1,a) represented by eight multiple-output 
cubes is transformed into a domain consisting of 16 
multiple-output minterms. 

The second way should be used, when the number of intervals 
of the set IF having ranks less than n is big and/or these ranks 
are much less than n. In these cases, the resulting Boolean 
matrix B could be great. The use of ternary simulation makes 
it possible to reduce the number of simulated vectors (by up to 
several orders of magnitude) and, therefore, the simulation 
time. Further we discuss this second way as it is more time and 
space efficient than the first one [4]. 

At the beginning of the simulation, the ordered set of n 
ternary vectors (corresponding to the columns of the matrix 
U and having the size |IF|) are taken as network inputs. Then 
gates of the network are simulated in the predefined 
topological order. Let a gate implementing the function ϕi

 

(z1i, z2i, …, zki) be simulated. For each its argument zji a 
ternary vector zji corresponds to and the vectors zji have been 
computed already. So, the simulation of the gate is reduced 
to performing the logic operation ϕi over ternary vectors z1i, 
z2i, …, zki in the bitwise style. The result of the simulation is 
a new ternary vector zi of the same size. The definition of 
basic operations over ternary variables is given bellow for all 
combinations of values of two ternary variables: 

  a:    0  0  0  –  –  –  1  1  1 
  b:    0  –  1  0  –  1  0  –  1 

     ⎯a:    1  1  1  –  –  –  0  0  0 
a ∧ b:    0  0  0  0  –  –  0  –  1 
a ∨ b:    0  –  1  –  –  1  1  1  1 

As soon as the last gate of the network has been simulated 
the following pairs of vectors are compared: the ternary 
vector f j (i = 1, 2,…, m) of values of the function fj ∈ F (the 
vector f j corresponds to the j-th column of the matrix T) and 
the ternary vector yj corresponding to the j-th primary output 
of the network. The following three cases are possible: 

1. Vectors f j and yj are orthogonal in some component.
Hence, the network does not implement the function fj. 
2. The vector f j covers the vector yj, i.e. values of all definite
components of f j are the same as the values of the 
corresponding components of yj. The network implements 
the function fj. 
3. The value of some i-th component of the vector yj is don’t
care, while the value of the corresponding component of the 
vector f j (corresponding to the interval ui of the matrix U) is 
equal 1 or 0. In this case, there exists no unambiguous 
answer whether the network implements the function fj or 
not. 

In the last case, an additional analysis is needed to detect the 
reason of distinction between the values. The simplest way is 

to simulate the network once more on all minterms of the 
interval ui ∈ U. Another way is to analyze controversial 
interval uj using SAT based verification methods [1, 5]. 

For instance, in Fig. 4 the results of the parallel ternary 
simulation of the three-block structure (Fig. 2) on cubes of 
the ISF system (Fig. 1,a) are presented. When the simulation 
is finished, the three pairs of vectors setting the values of the 
functions of the ISF system and the functions implemented 
at the structure’s outputs must be compared: 

y1:  0 1 1 1 – 1 0 1     y2: – 1 0 0 0 1 0 1    y3: – 1 0 – 0 1 0 – 
f 1:  0 – 1 1 0 1 – 1     f 2: – 1 – 0 – 1 0 1    f 3: – 1 0 – 0 – 0 – 

x1x2x3x4x5
0 1 0 – – 
0 0 0 1 1 
1 1 – 0 0 
1 1 1 – 1 
0 – 1 0 1 
1 0 0 1 1 
1 – 1 1 0 
1 0 0 0 – 

z1z2z3 
1 1 – 
0 1 1 
1 0 – 
1 0 – 
1 – 0 
0 1 1 
1 0 0 
0 1 1 

y1y2y3 
0 – – 
1 1 1 
1 0 0 
1 0 – 
– 0 0
1 1 1 
1 0 0 
1 1 – 

Figure 4. Results of parallel simulation of the three-block 
structure (Fig. 2) 

The aforementioned condition 2 is fulfilled for both pairs 
except the 5-th component of f 1 (it is shown in f 1 in bold 
face) for which the case 3 takes place. But by splitting the 
interval u5 = 0 – 1 0 1 into two minterms and simulating the 
structure on them we find out that y1(0 0 1 0 1) = y1(0 1 1 0 1) 
= 0 = t5

1, i.e. y1  implements f1. 

5. SIMULATION OF A MULTI-BLOCK STRUCTURE
WITH INDETERMINACY 
The second considered case when each block of the multi-
block structure realizes an ISF system (Fig. 3) is more 
complex and it is considered [6] for the case when the 
verified ISF system is specified on the domain of minterms 
only (specified by a Boolean matrix B instead of the ternary 
one). 

ISF f can be represented by a pair of disjunctive normal 
forms collecting conjunctions on which the function f takes 
values 1 and 0, correspondingly. So, each block can be 
considered as a two-level multi-output combinational 
network. The first is formed by multi-input AND gates, 
implementing conjunctions, and in the second level for each 
function yi

k of the k-th block, a pair of multi-input OR gates 
is used: one of them to implement yi

k and the other – to 
implement ⎯yi

k. Inputs of the OR gate implementing the 
function yi

k (and ⎯yi
k) are fed upon outputs of those AND 

gates which implement conjunctions on which the function 
yi

k takes value 1 (correspondingly, yi
k = 0). 

To get an ISF a pseudo-element is introduced – two input 
UNITE gate. Such a gate joins signals from two OR gates of 
the second level for yi

k and ⎯yi
k. Keep in mind, that a pair of 

completely specified Boolean functions yi
1(x) и yi

0(x) defines 
the ISF yi(x) which takes the value 1 on a minterm bj, if 
yi

1(bj) = 1, the value 0, if yi
0(bj) = 1, the value is don’t care, if 

yi
1(bj) = yi

0(bj) = 0, and yi
1(bj) = yi

0(bj) = 1 does not take 
place for consistent assignment of ISF, the UNITE function 
f (x0,x1) could be specified as follows: 

        x0: 0 0 1 1 
        x1: 0 1 0 1 
f (x0,x1): – 1 0 * 



Just as in the case 1, the multi-block structure (Fig. 3) is 
transformed into a multy-level network consisting of 
invertors, AND, OR and UNITE gates. The network is 
levelized and then simulated on the set of Boolean vectors 
corresponding to the columns of the matrix U. After 
finishing the simulation, the value yi of every i-th primary 
output of the network is compared with the value of the 
corresponding i-th component tj

i of the row tj of the matrix T 
for each j. The following cases are possible. 

1. tj
i = “–”  or  yi(bj) = tj

i for all j. In this case, the structure
implements the function fi.  
2. tj

i = σ and yi(bj) =⎯σ  or  yi(bj) = “–” (σ ∈ {1, 0}) for some
j. In this case, the structure does not implement the function
fi. 

For example, the result of simulation of the structure shown 
in Fig. 3 using the set of 5 binary vectors (corresponding to 
the columns of the matrix B of ISF system (Fig. 1,b)) allows 
to conclude that it implements the tested ISF system because 
only the case 1 has a place: 

y1: 0 1 0 0 0 1 1 0 0 0 1 y2: – 0 1 1 – 0 0 1 – 1 0; 
f 1: 0 – 0 – 0 1 1 0 0 – 1 f 2: – – 1 1 – 0 0 1 – 1 – 

y3: – 1 0 1 0 1 1 – 0 – 0 
f 3: – 1 0 – 0 1 1 – 0 – 0 

6. INVESTIGATION RESULTS OF
COMPARING SIMULATION-BASED 
METHODS OF VERIFICATION 
As it can be seen previously, ternary simulation is a 
powerful tool for verification because it allows simulate 
the verified network on intervals of Boolean space 
(bundles of minterms). But using the ternary 
simulation for some multiple-output cubes for which 
case 3 takes place, it is impossible to clearly answer 
whether the circuit implements some function or not. And 
so, the additional analysis is needed, for instance, binary 
simulation on minterms from this multiple-output cube. 

To estimate the viability of using ternary simulation for 
verification, it is important to answer the question: to what 
extent is ternary simulation efficient in terms of reducing the 
space of minterms for which binary simulation is 
unavoidable. 

In order to evaluate the efficiency of ternary simulation, 
investigations have been carried out on a stream of 94 
examples [7], each of which is an ISF system and a network 
implementing it. To carry out the experiments, 
pseudorandom ISF systems with predetermined parameters 
(the number of variables, functions, intervals, and the 
average number of don’t-cares in them) were generated. 

The synthesis of combinational circuit was carried out using 
two design procedures that begin with ISF system 
minimization and its decomposition into multilevel 
network of primitive gates, and end with transition to 
network consisting of elements from the CMOS 
library. The difference between the design procedures 
is that the first procedure [8] fulfils the decomposition 
into a multilevel network of two input NANDs, while 
the second one [9] fulfils the algebraic decomposition into 
a multilevel network of multiple-input ANDs and ORs. 

During the verification based on ternary simulation, the 
average amount k% of intervals (out of their total number) 
from the ISF system definition domain was registered 
for which 

ternary simulation failed to provide a result. The experiments 
have shown that the amount of intervals verified using 
ternary simulation depends more strongly on the synthesis 
technique of the circuit than on the parameters of the initial 
ISF system. The first technique turned out to be the most 
“inconvenient” synthesis technique for verification based on 
ternary simulation. This may be caused by the fact that the 
initial intervals of the Boolean space are split strongly in the 
process of multilevel network synthesis. With this fact 
discovered, the authors focused on this “inconvenient” 
technique in experiments (73 of 94 examples) in order to 
examine the efficiency of ternary simulation in worst cases. 

Nevertheless, the experimental results have shown that 
ternary simulation makes it possible to verify a significant 
part of all intervals. On the average, the ternary simulation 
made it possible to verify the implementability of 76% of the 
examined intervals of ISF systems generated and 
implemented by circuits using both techniques, and 69% of 
the examined intervals of ISF systems generated and 
implemented by circuits using the first “inconvenient” 
design procedure. 

The obtained results make it possible to conclude that the use 
of ternary simulation for the verification of logical 
description defined on a set of intervals of a Boolean space 
may significantly reduce the part of the space to be verified 
using more time consuming techniques (such as binary 
simulation or SAT-based verification). 
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