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ABSTRACT 
The problem under discussion is to check whether a given 
system of incompletely specified Boolean functions is 
implemented by a logical description with functional 
indeterminacy that is represented by a system of connected 
blocks each of which is specified by a system of completely 
or incompletely specified Boolean functions. SAT-based 
verification methods are considered which formulate the 
verification problem as checking satisfiability of a 
conjunctive normal form. The results of investigation of 
SAT-based verification methods are given. 
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1. INTRODUCTION
The role of combinational verification becomes more and 
more important with the rapid increase of the complexity of 
designs synthesized by modern CAD (computer-aided 
design) tools. Today, verification is a bottleneck in the 
overall VLSI design cycle as it consumes up to 70% of 
design effort [1, 2]. Unfortunately, the capabilities of 
verification tools has noticeably yielded to the capabilities of 
design systems, to say nothing of the technological 
achievements of the semiconductor industry. The problem of 
verification is to prove the behavioral equivalence of two 
descriptions of the same device representing different design 
solutions obtained in a microelectronic device design 
process. 

At present, the approach widely used in industry for the 
verification of the correctness of integrated circuits is the 
logical simulation [3] because of its scalability and 
execution time’s predictability. Since in the general 
case the simulation cannot provide complete 
verification (because the upper estimate of the number of 
test sets is equal to 2n, where n is the number of arguments 
of the verified descriptions), it is insufficient to use only 
simulation for the solution of the considered problem [4]. 

In recent decades, formal verification methods that aim to 
prove the functional identity of projects in a formal way have 
been developed rapidly as an alternative to simulation-
based verification. The methods are based on 
reduction of the verification problem to a problem 
of the satisfiability checking of a conjunctive normal 
form (CNF) [1–3], making it possible to ensure the 
completeness of the verification, in contrast to simulation 
methods. The development of these methods was 
facilitated by the significant progress in solving CNF 
satisfiability problem observed in the recent decades: 

state-of-the-art SAT-solvers [5–7] make it possible to work 
with CNF that include thousands of disjuncts and variables. 

In a typical verification scenario, there are two circuit 
implementations of the same design, and the problem is to 
prove their functional equivalence. In contrast to that in 
the paper, the verification task is examined for the case, 
when the desired functionality of the system under 
design is incompletely specified. 

We consider the verification problem for the case, 
when the desired incompletely specified functionality is 
given in the form of a system of incompletely 
specified Boolean functions (ISFs) and the compared 
functional description represents a multi-block structure 
with blocks specified by systems of completely or 
incompletely specified functions. A special case of such 
a multi-block structure is a combinational network 
or an ISF system. There is one-to-one correspondence 
between the arguments and functions of both the 
compared descriptions. ISFs are specified on intervals 
(cubes) of values of Boolean input variables, and 
the intervals are large enough. 
2. BASIC DEFINITIONS
An ISF system F(x) = { f1(x), f2(x), …, fm(x) } (where x = (x1, 
x2, …, xn) is a vector) is represented as a mapping of 
n-dimensional Boolean space Bn of vectors xi into 
m-dimensional space {0,1,–}m of vectors fj, where the 
symbol “–” denotes don’t-care condition. A completely 
specified Boolean function f (x) implements (covers) an ISF 
g(x) iff f (x) can be derived from g(x) by assigning either 0 or 
1 to each don’t-care point of Bn. An ISF is specified by off-
set Uf

0, on-set Uf
1 and dc-set Uf

dc as subsets of Bn (Uf
1 ∪ 

Uf
0 ∪ Uf

dc = Bn ). 
Let us specify a system F(x) as a set IF of multiple-output 
cubes (u, t ) each of which is a pair of ternary vectors u and t 
of sizes n and m. Here the input part of the cube u is a cube 
in Bn or a set of minterms bi (elements of Bn), and u can be 
represented by a conjunction of some literals (variables xi ∈ x 
or its inversions). The output part t is a ternary vector of values 
of functions for the cube u, or t is a conjunction of some 
literals fj ∈ F. For each fj ∈ F the j-th entry t j of t is 1 or 0 (t j = 1, 
0) if all the minterms of the cube u are in the on-set Ufj

1 or in the 
off-set Ufj

0 correspondingly; otherwise t j is don’t-care. 
A CNF represents a completely specified Boolean 
function as a conjunction of one or more clauses, each 
being in its turn a disjunction of literals. CNF 
representation is popular among SAT algorithms 
because each clause must be satisfied (evaluated to 1) 
for the overall CNF to be satisfied. The SAT problem is 
concerned with finding a truth 



assignment of CNF literals, which simultaneously satisfies 
each of its member clauses. If such an assignment exists the 
CNF is referred to as satisfiable, and the assignment is 
known as a satisfying assignment. Matrix representation of 
CNF formula C containing k clauses and p distinct variables 
is a ternary matrix C having k rows and p columns. 

A system F(x) of ISFs given by the set IF of multiple-output 
cubes (ui, ti

 ) can be represented in matrix form by a pair of 
ternary matrices U and T of the same cardinalities. For 
example, ISF system F(x) specified by IF = {(x3

 x4
 x5, f1), 

(⎯x2⎯x3⎯x4,⎯f1
 f2), (⎯x2

 x4
 x5, f2), (⎯x1

 x2⎯x5,⎯f1⎯f2), (⎯x2
 x3⎯x4, 

⎯f2), (x1
 x2, f1⎯f2)} is shown in Fig. 1,a. 

U 
x1x2x3x4x5 
– – 1 1 1 
– 0 0 0 –
– 0 – 1 1
0 1 – – 0 
– 0 1 0 –
1 1 – – – 

  T 
f1 f2 
1 –   1 
0 1   2 
– 1   3
0 0   4 
– 0   5
1 0   6 

Pk 
x1x2x3x4x5f1f2w1w2w3w4w5w6 
– – 1 – – – – 1 – – – – –  1 
– – – 1 – – – 1 – – – – –  2 
– – – – 1 – – 1 – – – – –  3 
– – – – – 0 – 1 – – – – –  4 
– 0 – – – – – – 1 – – – –  5
– – 0 – – – – – 1 – – – –  6 
– – – 0 – – – – 1 – – – –  7 
– – – – – 1 0 – 1 – – – –  8 

  … 
– – – – – – – 0 0 0 0 0 0 25

a)   b)
Figure 1. An example of: a) ISF system in matrix form and b) its 
encoded prohibitive CNF Pк 

3. SAT-BASED APPROACH TO 
VERIFICATION 
The past ten years have seen efforts in developing 
commercial formal verification tools (by reducing to SAT) 
that provide more general results than traditional simulation 
methods: it is possible to guarantee that a specific property 
holds for a design under all possible input stimuli. In a 
modern combinational equivalence checking flow based on 
formal verification approach, both networks to be verified 
are transformed into a single comparing circuit. It is derived 
by combining the pairs of inputs with the same names and 
feeding the pairs of outputs with the same names into EXOR 
gates, which are ORed to produce the single output of the 
comparing circuit. There is constant 0 on the output if and 
only if the two original circuits are equivalent. 

To test whether the circuit output is 1 or 0, the conventional 
CNF is produced for it. Once the overall problem is 
formulated in CNF, a SAT solver can be used to solve it [5–7]. 
A circuit-to-CNF conversion uses as many variables as there 
are primary inputs and gates in the circuit: for output of each 
gate its own internal Boolean variable is introduced. And a 
local CNF is associated with each gate. Then local CNFs are 
joined in the overall network CNF C(S) by the conjunction 
operation (Fig. 2). The derivation of the local CNF for a gate 
representing a local function y = f (z1, z2, …, zk) is based on 
defining a new Boolean function ϕ  (y, f) = y ∼ f  [5], that is 
true in the only case when both functions y and f assume the 
same value. Here are the conventional CNF representations 
of NOT, n-input AND and OR functions: 

(z ∨ y) (⎯z ∨⎯y); 
(z1 ∨⎯y) (z2 ∨⎯y) … (zn ∨⎯y) (⎯z1 ∨⎯z2 ∨ … ∨⎯zn ∨ y); 
(⎯z1 ∨ y) (⎯z2 ∨ y) … (⎯zn ∨ y) (z1 ∨ z2 ∨ … ∨ zn ∨⎯y). 

Further we are focusing on the case when the first of 
descriptions to be compared is an ISF system and the second 
one is represented by some sort of multi-block structure. We 
consider two cases: 1) the structure has no indeterminacy 

and each its block is represented by CNF system; 2) the 
structure has indeterminacy and each its block is represented 
by ISF system. 

x1x2x3x4x5z1z2z3y1y2 
 1 – – – – 0 – – – –   1 
– 1 – – – 0 – – – –   2

 0 0 – – – 1 – – – –   3 
 – – – 1 – – 0 – – –   4 
 – – – – 1 – 0 – – –   5 
 – – – 0 0 – 1 – – –   6 
 – – 0 – – – 1 0 – –   7 
 – – 1 – – – – 1 – –   8 
 – – – – – – 0 1 – –   9 
 – – – – – 1 1 – 0 –   10 
 – – – – – 0 – – 1 –   11 
 – – – – – – 0 – 1 –   12 
– 0 – – – – – – – 0   13

 – – – – – – – 1 – 0   14 
– 1 – – – – – 0 – 1   15

a)   b)
Figure 2. An example of: a) combinational circuit and b) its 

conventional CNF 

The above traditional approach which constructs a 
comparing circuit cannot be applied, just as it is, for the 
declared cases because at least one of the given 
forms of functional representation may be specified 
incompletely. 
To reduce the verification problem to SAT we construct two 
CNFs P(F) and C(S). CNF P(F) describes all assignments 
contradictory to the first form (ISF system) and is 
called prohibitive CNF of the ISF system. CNF C(S) 
describes all possible assignments for the second form 
(logical network or multi-block structure), and it is 
called traditionally as conventional CNF in the case 
of the structure without indeterminacy (combinational 
circuit) or, otherwise, it is called permissible CNF that 
is some sort of the conventional CNF for a structure with 
indeterminacy. 
Assertion. A multi-block structure S implements an ISF 
system F(x) if and only if CNF P(F) ∧ C(S) is unsatisfiable 
[8, 9]. 

4. SAT BASED VERIFICATION CASES
4.1. Verification case 1
In the case when a multi-block structure has no 
indeterminacy, it can be easily transformed into a multi-level 
combinational network which consists of NOT, AND and 
OR gates. And a problem under discussion is to verify if a 
given network implements the ISF system. It is true if it 
takes place for each multiple-output cube. In terms of 
network CNF, this condition could be reformulated as 
follows [8]: for every multiple-output cube (ui, ti) ∈ IF a 
partial value assignment satisfying the conjunction ui

 ti 
should satisfy the network CNF. 

In other words, a network implements ISF system F(x), iff 
for every multiple-output cube (ui, ti) ∈ IF a partial value 
assignment satisfying the conjunction ui⎯ti (i.e. contradicting 
to ui, ti) is unsatisfying assignment for the network CNF. If 
ui = x1

i x2
i… xi

ni and ti = f1
i f2

i… fmi
i then the CNF Pi 

specifying the contradiction of the multiple-output cube 
(ui, ti), called as the cube-prohibitive CNF, consists of the 
following ni + 1 clauses: 

Pi(x, f) = x1
i x2

i… xi
ni

 (⎯f1
i ∨⎯f2

i ∨… ∨⎯fmi
i). 



For example, the prohibitive CNF (Fig. 1) for the 
multiple-output cube s6 = (x1

 x2, f1⎯f2) from F(x) = (U, T) has 
three clauses: P6(x, f) = (x1) (x2) (⎯f1 ∨

 f2). 

Appending clauses of Pi to the network CNF C(S) results in 
CNF С(Pi) = C(S) ∧ Pi. It is not difficult to prove that CNF 
С(Pi) is satisfiable iff the network does not implement the 
i-th multiple-output cube. As to the whole ISF system it is 
not implemented by the network iff at least one of its 
multiple-output cubes is not implemented by the network, 
i.e. if the following formula is satisfiable [10]: 

С = С(S) ∧ P(F)  = С ∧ (P1 ∨ P2 ∨… ∨ Pl), (1) 
where P(F) is the ISF system prohibitive CNF. 

To apply any SAT-solver to check whether for the CNF С a 
satisfying assignment exists it is necessary to convert the 
formula P(F) to a CNF form. Theoretically this could be 
done always, but it is NP-hard problem. We are interested in 
a method of construction of ISF system prohibitive CNF 
P(F) having linear complexity. Next the method is proposed 
that is based on encoding multiple-output cubes and their 
prohibitive CNFs using coding variables wi ∈ w. After 
encoding, prohibitive CNFs Pi(x, f) are transformed into 
encoded prohibitive CNFs Pi

к(x, f, w) and the formula (1) 
becomes 

Ск = С ∧ (P1
k ∧ P2

k ∧… ∧ Pl
k) ∧ Q(w),  (2) 

where Q(w) provides that the CNF Ск will be satisfiable iff at 
least one CNF Pi ∈ P(F) is satisfiable. From now on Q(w) is 
called as alternative CNF. 

When transforming the formula (1) into the CNF form (2) 
each cube-prohibitive CNF Pi is encoded by a code in the 
form of a disjunction di = wi1

σi1 ∨ wi2
σi2 ∨…∨ wir

σir (σir ∈ 
{0,1}, wir

1 = wir and wir
0 =⎯wir, and wij ∈ w): 

Pi
k(x, f, w) = (x1

i ∨ di) … (xi
ni

 ∨ di) (⎯f1
i ∨ …∨⎯fmi

i ∨ di)   (3) 

To formulate the conditions the alternative CNF Q(w) in (2) 
must satisfy for the chosen cube-prohibitive CNF encoding, 
let us denote by fQ and fdi the functions represented by Q(w) 
and di(w) and by U1

Q and U1
di – their on-sets. 

Assertion [10]. Any alternative CNF Q(w) for a given 
encoding of cube-prohibitive CNFs must satisfy the 
following conditions: 

1) (
i
∧ fdi) ∧ fQ = 0 or (

i
∩Mdi

1) ∩ MQ
1 = ∅;

2) (
ji≠

∧ fdi) ∧ fQ ≠ 0 or (
ji≠

∩ Mdi
1) ∩ MQ

1 ≠ ∅ for all j. 

The first condition ensures the CNF P(x, f, w) = (P1
k ∧ 

P2
k ∧… ∧ Pl

k) ∧ Q be unsatisfiable when the circuit 
implements the analyzed ISF system, i.e. when all cube-
prohibitive CNFs Pi(x, f) are unsatisfiable. The second 
condition ensures the CNF P(x, f, w) be satisfiable when the 
circuit does not implement the analyzed ISF system, i.e. 
there exists at least one multiple-output cube, for example j-
th one, that is not realized by it. Thus, a variable 
assignment can be found satisfying the cube-prohibitive 
CNF Pj(x, f) (and Pj

k(x, f, w), too). Fulfillment of 
the second condition guarantees that there exists at 
least one assignment of coding variables that ensures 
satisfiability of Q(w) and all cube prohibitive CNFs Pi

k 
except the j-th one (that is satisfiable by the assumption). 

Two basic methods of encoding multiple-output cubes 
(satisfying the above Assertion) have been investigated: 
encoding by codes of unit [8] and logarithmic length [9]. The 
first method supposes to introduce as many coding variables 
wi as there exist multiple-output cubes in the ISF system 
specification IF. The second method introduces the minimal 
number of coding variables that is r = ⎡log2|IF|⎤. The method 
of encoding by codes of logarithmic length allows to reduce 
substantially the number of coding variables as compared 
with the method of encoding by unary codes, but codes (and 
CNF clauses) are dense enough. 

Further we focus upon increasing efficiency of verification 
process using unary encoding of multiple-output cubes. 
Using it Pi

k(x, f, w) (3) changes for the following encoded 
form: 

Pi
к = (x1

i ∨ wi)(x2
i ∨ wi) … (xi

ni
 ∨ wi)(⎯f1

i ∨ …∨⎯fmi
i ∨ wi), 

and the alternative CNF Q satisfying the above Assertion 
becomes: Q = ⎯w1

 ∨⎯w2
 ∨ … ∨⎯wl . 

For example, the fragment of the prohibitive CNF for the 
ISF system in the matrix form is shown in Fig. 1,b. If we 
combine the circuit conventional CNF (Fig. 2,b) and the 
prohibitive CNF (identifying y1, y2 with f1, f2) and then carry 
out the satisfiability test of the resulting CNF, we may make 
sure that it is nonsatisfiable. Therefore, the circuit (Fig. 2,a) 
implements the ISF system (Fig. 1,a). 

4.2. Verification case 2
Here we consider the verification problem for the case, when 
both compared descriptions are incompletely specified. For 
example, we have a multi-block structure S with 
indeterminacy such as one in Fig. 3 and an ISF system F(x) 
such as one in Fig. 1,a. 

Figure 3. Three-block structure with indeterminacy 

Just as in the previous section we formulate the verification 
problem as verifying whether CNF С = С(S) ∧ P(F) is 
satisfiable. Here P(F) is the ISF system F(x) prohibitive 
CNF, С(S) is some sort of the conventional CNF but only for 
a multi-block structure with indeterminacy or for an ISF 
system (that can be considered instead of one-block 
structure). To distinguish it from the conventional CNF let's 
call it further as the permissible CNF. The permissible CNF 
describes the set of admissible combinations of signals on all 
the nodes of structure blocks; i.e., each set of values 
satisfying the CNF is admissible for this structure. The 
permissible CNF С(S) is the conjunction of permissible 
CNFs С(Bi) of its blocks or permissible CNFs С(Fi) of their 
ISF systems. 



Three methods of construction of a permissible CNF for an 
ISF system are proposed. The first one is based on the 
paraphrased representation of ISFs [11]. And two methods 
are based on the application of implicative conditions: 
implication [12] and implication with coding of conditions 
[13] methods. Here we dwell on the implication method. 

Assertion [12]. The permissible CNF C(G) of an ISF system 
G (x) defined by a set of its multiple-output cubes si = (ui, ti) 
(i = 1, 2,…, r) is generated by the formula: 

(u1
 → t1) ∧ (u2

 → t2) ∧ … ∧ (ur
 → tr). 

The permissible CNF for a multiple-output cube si
G = (ui, ti) 

with ui = x1
i x2

i… xi
ni and ti

G = y1
i y2

i… ymi
i consists of as 

many clauses as the size of the term ti is: 

Ci = (ui
 → ti

 ) =⎯ui
 ∨ ti =⎯x1

i ∨⎯x2
i ∨… ∨⎯xi

ni ∨ (y1
i y2

i … ymi
i)= 

=(⎯x1
i ∨⎯x2

i ∨… ∨⎯xi
ni ∨ y1

i) ∧…∧ (⎯x1
i ∨⎯x2

i ∨… ∨⎯xi
ni ∨ ymi

i). 

For example, the permissible CNF for the first block of the 
structure (Fig. 3) consists of five clauses: ( x1

 ∨⎯x2
 ∨ z1)∧ 

( x1
 ∨⎯x2

 ∨⎯z2) ( x1
 ∨ x2

 ∨ z1) ( x1
 ∨ x2

 ∨ z2) (⎯x2
 ∨⎯x3

 ∨⎯z1). 

The key idea of the proposed method of checking whether an 
ISF system F (x) is implemented by a multi-block structure S 
with indeterminacy is as follows. We obtain the prohibitive 
CNF P(F) and the permissible CNF C(S). 

Assertion. A multi-block structure S with indeterminacy 
implements an ISF system F (x) iff the CNF P(F) ∧ C(S) is 
unsatisfiable. 

One can make sure after constructing P(F) ∧ C(S) for the 
ISF system in Fig. 1,a and three-block structure in Fig. 3 
that there is no satisfying assignment for the CNF. 
Thus, the structure implements the ISF system. 

4.3. Organization of SAT problem solving 
for verification
Three verification methods are proposed [10] that are based 
on successive, simultaneous and group testing multiple-
output cubes from IF. The first method formulates as many 
SAT problems as the number of cubes are there in an ISF 
system tested. The second method formulates verification 
task as the only SAT problem (using coding the cubes as 
shown above).The third method divides the overall set IF of 
multiple-output cubes into groups and formulates as many 
SAT problems as the number of groups are there. 

The investigations of the methods [10] have shown that the 
group method is more effective because it allows 1) to 
achieve trade-offs between expenses on forming data for 
SAT-solver and SAT-solver performance; and thereby 2) 
to reduce the overall verification time. 

5. EXPERIMENTAL RESULTS
All the mentioned verification methods have been 
implemented on C++ programming language. Then the 
programs were investigated on the sets of pseudo-random 
pairs of descriptions: ISF system and multi-block structure 
implementing it (with or without indeterminacy). MiniSat 
solver [7] has been used in the experiments. The goal of 
experiments was 1) to compare the competitive methods 
solving the same task on the same set of examples; 2) to 
investigate experimentally domains of preferable usage of 
the proposed methods; 3) to find out the most effective value 

of group size for group testing verification methods. The 
experiments have shown that: 

1) the group size about 200 gives good enough results: group
methods gain stably in efficiency compared with the 
methods of successive and simultaneous testing of multiple-
output cubes, the win gain is about 35% over the method of 
simultaneous testing; 
2) substantial reduction of variables when using logarithmic
encoding of multiple-output cubes did not bring about 
substantial speedup of the solution of verification problem; 
3) despite the fact that the implication method is simpler than
that of implication with condition coding and gives shorter 
CNFs, it has smaller speed. 
4) simulation based verification methods have 60 times
greater speed on average than SAT based methods 
solving the same task.
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