
SAT-based verification of implementations of incompletely
specified Boolean functions

Liudmila Cheremisinova
United Institute of Informatics
Problems of NAS of Belarus

Minsk, Belarus
e-mail: cld@newman.bas-net.by

ABSTRACT
The problem under discussion is to check whether a given
system of incompletely specified Boolean functions is
implemented by a logical description with functional
indeterminacy that is represented by a system of connected
blocks each of which is specified by a system of completely
or incompletely specified Boolean functions. SAT-based
verification methods are considered which formulate the
verification problem as checking satisfiability of a
conjunctive normal form. The results of investigation of
SAT-based verification methods are given.

Keywords
Computer-aided design, formal verification, satisfiabilty of a
conjunctive normal form

1. INTRODUCTION
The role of combinational verification becomes more and
more important with the rapid increase of the complexity of
designs synthesized by modern CAD (computer-aided
design) tools. Today, verification is a bottleneck in the
overall VLSI design cycle as it consumes up to 70% of
design effort [1, 2]. Unfortunately, the capabilities of
verification tools has noticeably yielded to the capabilities of
design systems, to say nothing of the technological
achievements of the semiconductor industry. The problem of
verification is to prove the behavioral equivalence of two
descriptions of the same device representing different design
solutions obtained in a microelectronic device design
process.

At present, the approach widely used in industry for the
verification of the correctness of integrated circuits is the
logical simulation [3] because of its scalability and
execution time’s predictability. Since in the general
case the simulation cannot provide complete
verification (because the upper estimate of the number of
test sets is equal to 2n, where n is the number of arguments
of the verified descriptions), it is insufficient to use only
simulation for the solution of the considered problem [4].

In recent decades, formal verification methods that aim to
prove the functional identity of projects in a formal way have
been developed rapidly as an alternative to simulation-
based verification. The methods are based on
reduction of the verification problem to a problem
of the satisfiability checking of a conjunctive normal
form (CNF) [1–3], making it possible to ensure the
completeness of the verification, in contrast to simulation
methods. The development of these methods was
facilitated by the significant progress in solving CNF
satisfiability problem observed in the recent decades:

state-of-the-art SAT-solvers [5–7] make it possible to work
with CNF that include thousands of disjuncts and variables.

In a typical verification scenario, there are two circuit
implementations of the same design, and the problem is to
prove their functional equivalence. In contrast to that in
the paper, the verification task is examined for the case,
when the desired functionality of the system under
design is incompletely specified.

We consider the verification problem for the case,
when the desired incompletely specified functionality is
given in the form of a system of incompletely
specified Boolean functions (ISFs) and the compared
functional description represents a multi-block structure
with blocks specified by systems of completely or
incompletely specified functions. A special case of such
a multi-block structure is a combinational network
or an ISF system. There is one-to-one correspondence
between the arguments and functions of both the
compared descriptions. ISFs are specified on intervals
(cubes) of values of Boolean input variables, and
the intervals are large enough.
2. BASIC DEFINITIONS
An ISF system F(x) = { f1(x), f2(x), …, fm(x) } (where x = (x1,
x2, …, xn) is a vector) is represented as a mapping of
n-dimensional Boolean space Bn of vectors xi into
m-dimensional space {0,1,–}m of vectors fj, where the
symbol “–” denotes don’t-care condition. A completely
specified Boolean function f (x) implements (covers) an ISF
g(x) iff f (x) can be derived from g(x) by assigning either 0 or
1 to each don’t-care point of Bn. An ISF is specified by off-
set Uf

0, on-set Uf
1 and dc-set Uf

dc as subsets of Bn (Uf
1 ∪

Uf
0 ∪ Uf

dc = Bn).
Let us specify a system F(x) as a set IF of multiple-output
cubes (u, t) each of which is a pair of ternary vectors u and t
of sizes n and m. Here the input part of the cube u is a cube
in Bn or a set of minterms bi (elements of Bn), and u can be
represented by a conjunction of some literals (variables xi ∈ x
or its inversions). The output part t is a ternary vector of values
of functions for the cube u, or t is a conjunction of some
literals fj ∈ F. For each fj ∈ F the j-th entry t j of t is 1 or 0 (t j = 1,
0) if all the minterms of the cube u are in the on-set Ufj

1 or in the
off-set Ufj

0 correspondingly; otherwise t j is don’t-care.
A CNF represents a completely specified Boolean
function as a conjunction of one or more clauses, each
being in its turn a disjunction of literals. CNF
representation is popular among SAT algorithms
because each clause must be satisfied (evaluated to 1)
for the overall CNF to be satisfied. The SAT problem is
concerned with finding a truth

assignment of CNF literals, which simultaneously satisfies
each of its member clauses. If such an assignment exists the
CNF is referred to as satisfiable, and the assignment is
known as a satisfying assignment. Matrix representation of
CNF formula C containing k clauses and p distinct variables
is a ternary matrix C having k rows and p columns.

A system F(x) of ISFs given by the set IF of multiple-output
cubes (ui, ti

) can be represented in matrix form by a pair of
ternary matrices U and T of the same cardinalities. For
example, ISF system F(x) specified by IF = {(x3

 x4
 x5, f1),

(⎯x2⎯x3⎯x4,⎯f1
 f2), (⎯x2

 x4
 x5, f2), (⎯x1

 x2⎯x5,⎯f1⎯f2), (⎯x2
 x3⎯x4,

⎯f2), (x1
 x2, f1⎯f2)} is shown in Fig. 1,a.

U
x1x2x3x4x5
– – 1 1 1
– 0 0 0 –
– 0 – 1 1
0 1 – – 0
– 0 1 0 –
1 1 – – –

 T
f1 f2
1 – 1
0 1 2
– 1 3
0 0 4
– 0 5
1 0 6

Pk
x1x2x3x4x5f1f2w1w2w3w4w5w6
– – 1 – – – – 1 – – – – – 1
– – – 1 – – – 1 – – – – – 2
– – – – 1 – – 1 – – – – – 3
– – – – – 0 – 1 – – – – – 4
– 0 – – – – – – 1 – – – – 5
– – 0 – – – – – 1 – – – – 6
– – – 0 – – – – 1 – – – – 7
– – – – – 1 0 – 1 – – – – 8

 …
– – – – – – – 0 0 0 0 0 0 25

a) b)
Figure 1. An example of: a) ISF system in matrix form and b) its
encoded prohibitive CNF Pк

3. SAT-BASED APPROACH TO
VERIFICATION
The past ten years have seen efforts in developing
commercial formal verification tools (by reducing to SAT)
that provide more general results than traditional simulation
methods: it is possible to guarantee that a specific property
holds for a design under all possible input stimuli. In a
modern combinational equivalence checking flow based on
formal verification approach, both networks to be verified
are transformed into a single comparing circuit. It is derived
by combining the pairs of inputs with the same names and
feeding the pairs of outputs with the same names into EXOR
gates, which are ORed to produce the single output of the
comparing circuit. There is constant 0 on the output if and
only if the two original circuits are equivalent.

To test whether the circuit output is 1 or 0, the conventional
CNF is produced for it. Once the overall problem is
formulated in CNF, a SAT solver can be used to solve it [5–7].
A circuit-to-CNF conversion uses as many variables as there
are primary inputs and gates in the circuit: for output of each
gate its own internal Boolean variable is introduced. And a
local CNF is associated with each gate. Then local CNFs are
joined in the overall network CNF C(S) by the conjunction
operation (Fig. 2). The derivation of the local CNF for a gate
representing a local function y = f (z1, z2, …, zk) is based on
defining a new Boolean function ϕ (y, f) = y ∼ f [5], that is
true in the only case when both functions y and f assume the
same value. Here are the conventional CNF representations
of NOT, n-input AND and OR functions:

(z ∨ y) (⎯z ∨⎯y);
(z1 ∨⎯y) (z2 ∨⎯y) … (zn ∨⎯y) (⎯z1 ∨⎯z2 ∨ … ∨⎯zn ∨ y);
(⎯z1 ∨ y) (⎯z2 ∨ y) … (⎯zn ∨ y) (z1 ∨ z2 ∨ … ∨ zn ∨⎯y).

Further we are focusing on the case when the first of
descriptions to be compared is an ISF system and the second
one is represented by some sort of multi-block structure. We
consider two cases: 1) the structure has no indeterminacy

and each its block is represented by CNF system; 2) the
structure has indeterminacy and each its block is represented
by ISF system.

x1x2x3x4x5z1z2z3y1y2
 1 – – – – 0 – – – – 1
– 1 – – – 0 – – – – 2

 0 0 – – – 1 – – – – 3
 – – – 1 – – 0 – – – 4
 – – – – 1 – 0 – – – 5
 – – – 0 0 – 1 – – – 6
 – – 0 – – – 1 0 – – 7
 – – 1 – – – – 1 – – 8
 – – – – – – 0 1 – – 9
 – – – – – 1 1 – 0 – 10
 – – – – – 0 – – 1 – 11
 – – – – – – 0 – 1 – 12
– 0 – – – – – – – 0 13

 – – – – – – – 1 – 0 14
– 1 – – – – – 0 – 1 15

a) b)
Figure 2. An example of: a) combinational circuit and b) its

conventional CNF

The above traditional approach which constructs a
comparing circuit cannot be applied, just as it is, for the
declared cases because at least one of the given
forms of functional representation may be specified
incompletely.
To reduce the verification problem to SAT we construct two
CNFs P(F) and C(S). CNF P(F) describes all assignments
contradictory to the first form (ISF system) and is
called prohibitive CNF of the ISF system. CNF C(S)
describes all possible assignments for the second form
(logical network or multi-block structure), and it is
called traditionally as conventional CNF in the case
of the structure without indeterminacy (combinational
circuit) or, otherwise, it is called permissible CNF that
is some sort of the conventional CNF for a structure with
indeterminacy.
Assertion. A multi-block structure S implements an ISF
system F(x) if and only if CNF P(F) ∧ C(S) is unsatisfiable
[8, 9].

4. SAT BASED VERIFICATION CASES
4.1. Verification case 1
In the case when a multi-block structure has no
indeterminacy, it can be easily transformed into a multi-level
combinational network which consists of NOT, AND and
OR gates. And a problem under discussion is to verify if a
given network implements the ISF system. It is true if it
takes place for each multiple-output cube. In terms of
network CNF, this condition could be reformulated as
follows [8]: for every multiple-output cube (ui, ti) ∈ IF a
partial value assignment satisfying the conjunction ui

 ti
should satisfy the network CNF.

In other words, a network implements ISF system F(x), iff
for every multiple-output cube (ui, ti) ∈ IF a partial value
assignment satisfying the conjunction ui⎯ti (i.e. contradicting
to ui, ti) is unsatisfying assignment for the network CNF. If
ui = x1

i x2
i… xi

ni and ti = f1
i f2

i… fmi
i then the CNF Pi

specifying the contradiction of the multiple-output cube
(ui, ti), called as the cube-prohibitive CNF, consists of the
following ni + 1 clauses:

Pi(x, f) = x1
i x2

i… xi
ni

 (⎯f1
i ∨⎯f2

i ∨… ∨⎯fmi
i).

For example, the prohibitive CNF (Fig. 1) for the
multiple-output cube s6 = (x1

 x2, f1⎯f2) from F(x) = (U, T) has
three clauses: P6(x, f) = (x1) (x2) (⎯f1 ∨

 f2).

Appending clauses of Pi to the network CNF C(S) results in
CNF С(Pi) = C(S) ∧ Pi. It is not difficult to prove that CNF
С(Pi) is satisfiable iff the network does not implement the
i-th multiple-output cube. As to the whole ISF system it is
not implemented by the network iff at least one of its
multiple-output cubes is not implemented by the network,
i.e. if the following formula is satisfiable [10]:

С = С(S) ∧ P(F) = С ∧ (P1 ∨ P2 ∨… ∨ Pl), (1)
where P(F) is the ISF system prohibitive CNF.

To apply any SAT-solver to check whether for the CNF С a
satisfying assignment exists it is necessary to convert the
formula P(F) to a CNF form. Theoretically this could be
done always, but it is NP-hard problem. We are interested in
a method of construction of ISF system prohibitive CNF
P(F) having linear complexity. Next the method is proposed
that is based on encoding multiple-output cubes and their
prohibitive CNFs using coding variables wi ∈ w. After
encoding, prohibitive CNFs Pi(x, f) are transformed into
encoded prohibitive CNFs Pi

к(x, f, w) and the formula (1)
becomes

Ск = С ∧ (P1
k ∧ P2

k ∧… ∧ Pl
k) ∧ Q(w), (2)

where Q(w) provides that the CNF Ск will be satisfiable iff at
least one CNF Pi ∈ P(F) is satisfiable. From now on Q(w) is
called as alternative CNF.

When transforming the formula (1) into the CNF form (2)
each cube-prohibitive CNF Pi is encoded by a code in the
form of a disjunction di = wi1

σi1 ∨ wi2
σi2 ∨…∨ wir

σir (σir ∈
{0,1}, wir

1 = wir and wir
0 =⎯wir, and wij ∈ w):

Pi
k(x, f, w) = (x1

i ∨ di) … (xi
ni

 ∨ di) (⎯f1
i ∨ …∨⎯fmi

i ∨ di) (3)

To formulate the conditions the alternative CNF Q(w) in (2)
must satisfy for the chosen cube-prohibitive CNF encoding,
let us denote by fQ and fdi the functions represented by Q(w)
and di(w) and by U1

Q and U1
di – their on-sets.

Assertion [10]. Any alternative CNF Q(w) for a given
encoding of cube-prohibitive CNFs must satisfy the
following conditions:

1) (
i
∧ fdi) ∧ fQ = 0 or (

i
∩Mdi

1) ∩ MQ
1 = ∅;

2) (
ji≠

∧ fdi) ∧ fQ ≠ 0 or (
ji≠

∩ Mdi
1) ∩ MQ

1 ≠ ∅ for all j.

The first condition ensures the CNF P(x, f, w) = (P1
k ∧

P2
k ∧… ∧ Pl

k) ∧ Q be unsatisfiable when the circuit
implements the analyzed ISF system, i.e. when all cube-
prohibitive CNFs Pi(x, f) are unsatisfiable. The second
condition ensures the CNF P(x, f, w) be satisfiable when the
circuit does not implement the analyzed ISF system, i.e.
there exists at least one multiple-output cube, for example j-
th one, that is not realized by it. Thus, a variable
assignment can be found satisfying the cube-prohibitive
CNF Pj(x, f) (and Pj

k(x, f, w), too). Fulfillment of
the second condition guarantees that there exists at
least one assignment of coding variables that ensures
satisfiability of Q(w) and all cube prohibitive CNFs Pi

k
except the j-th one (that is satisfiable by the assumption).

Two basic methods of encoding multiple-output cubes
(satisfying the above Assertion) have been investigated:
encoding by codes of unit [8] and logarithmic length [9]. The
first method supposes to introduce as many coding variables
wi as there exist multiple-output cubes in the ISF system
specification IF. The second method introduces the minimal
number of coding variables that is r = ⎡log2|IF|⎤. The method
of encoding by codes of logarithmic length allows to reduce
substantially the number of coding variables as compared
with the method of encoding by unary codes, but codes (and
CNF clauses) are dense enough.

Further we focus upon increasing efficiency of verification
process using unary encoding of multiple-output cubes.
Using it Pi

k(x, f, w) (3) changes for the following encoded
form:

Pi
к = (x1

i ∨ wi)(x2
i ∨ wi) … (xi

ni
 ∨ wi)(⎯f1

i ∨ …∨⎯fmi
i ∨ wi),

and the alternative CNF Q satisfying the above Assertion
becomes: Q = ⎯w1

 ∨⎯w2
 ∨ … ∨⎯wl .

For example, the fragment of the prohibitive CNF for the
ISF system in the matrix form is shown in Fig. 1,b. If we
combine the circuit conventional CNF (Fig. 2,b) and the
prohibitive CNF (identifying y1, y2 with f1, f2) and then carry
out the satisfiability test of the resulting CNF, we may make
sure that it is nonsatisfiable. Therefore, the circuit (Fig. 2,a)
implements the ISF system (Fig. 1,a).

4.2. Verification case 2
Here we consider the verification problem for the case, when
both compared descriptions are incompletely specified. For
example, we have a multi-block structure S with
indeterminacy such as one in Fig. 3 and an ISF system F(x)
such as one in Fig. 1,a.

Figure 3. Three-block structure with indeterminacy

Just as in the previous section we formulate the verification
problem as verifying whether CNF С = С(S) ∧ P(F) is
satisfiable. Here P(F) is the ISF system F(x) prohibitive
CNF, С(S) is some sort of the conventional CNF but only for
a multi-block structure with indeterminacy or for an ISF
system (that can be considered instead of one-block
structure). To distinguish it from the conventional CNF let's
call it further as the permissible CNF. The permissible CNF
describes the set of admissible combinations of signals on all
the nodes of structure blocks; i.e., each set of values
satisfying the CNF is admissible for this structure. The
permissible CNF С(S) is the conjunction of permissible
CNFs С(Bi) of its blocks or permissible CNFs С(Fi) of their
ISF systems.

Three methods of construction of a permissible CNF for an
ISF system are proposed. The first one is based on the
paraphrased representation of ISFs [11]. And two methods
are based on the application of implicative conditions:
implication [12] and implication with coding of conditions
[13] methods. Here we dwell on the implication method.

Assertion [12]. The permissible CNF C(G) of an ISF system
G (x) defined by a set of its multiple-output cubes si = (ui, ti)
(i = 1, 2,…, r) is generated by the formula:

(u1
 → t1) ∧ (u2

 → t2) ∧ … ∧ (ur
 → tr).

The permissible CNF for a multiple-output cube si
G = (ui, ti)

with ui = x1
i x2

i… xi
ni and ti

G = y1
i y2

i… ymi
i consists of as

many clauses as the size of the term ti is:

Ci = (ui
 → ti

) =⎯ui
 ∨ ti =⎯x1

i ∨⎯x2
i ∨… ∨⎯xi

ni ∨ (y1
i y2

i … ymi
i)=

=(⎯x1
i ∨⎯x2

i ∨… ∨⎯xi
ni ∨ y1

i) ∧…∧ (⎯x1
i ∨⎯x2

i ∨… ∨⎯xi
ni ∨ ymi

i).

For example, the permissible CNF for the first block of the
structure (Fig. 3) consists of five clauses: (x1

 ∨⎯x2
 ∨ z1)∧

(x1
 ∨⎯x2

 ∨⎯z2) (x1
 ∨ x2

 ∨ z1) (x1
 ∨ x2

 ∨ z2) (⎯x2
 ∨⎯x3

 ∨⎯z1).

The key idea of the proposed method of checking whether an
ISF system F (x) is implemented by a multi-block structure S
with indeterminacy is as follows. We obtain the prohibitive
CNF P(F) and the permissible CNF C(S).

Assertion. A multi-block structure S with indeterminacy
implements an ISF system F (x) iff the CNF P(F) ∧ C(S) is
unsatisfiable.

One can make sure after constructing P(F) ∧ C(S) for the
ISF system in Fig. 1,a and three-block structure in Fig. 3
that there is no satisfying assignment for the CNF.
Thus, the structure implements the ISF system.

4.3. Organization of SAT problem solving
for verification
Three verification methods are proposed [10] that are based
on successive, simultaneous and group testing multiple-
output cubes from IF. The first method formulates as many
SAT problems as the number of cubes are there in an ISF
system tested. The second method formulates verification
task as the only SAT problem (using coding the cubes as
shown above).The third method divides the overall set IF of
multiple-output cubes into groups and formulates as many
SAT problems as the number of groups are there.

The investigations of the methods [10] have shown that the
group method is more effective because it allows 1) to
achieve trade-offs between expenses on forming data for
SAT-solver and SAT-solver performance; and thereby 2)
to reduce the overall verification time.

5. EXPERIMENTAL RESULTS
All the mentioned verification methods have been
implemented on C++ programming language. Then the
programs were investigated on the sets of pseudo-random
pairs of descriptions: ISF system and multi-block structure
implementing it (with or without indeterminacy). MiniSat
solver [7] has been used in the experiments. The goal of
experiments was 1) to compare the competitive methods
solving the same task on the same set of examples; 2) to
investigate experimentally domains of preferable usage of
the proposed methods; 3) to find out the most effective value

of group size for group testing verification methods. The
experiments have shown that:

1) the group size about 200 gives good enough results: group
methods gain stably in efficiency compared with the
methods of successive and simultaneous testing of multiple-
output cubes, the win gain is about 35% over the method of
simultaneous testing;
2) substantial reduction of variables when using logarithmic
encoding of multiple-output cubes did not bring about
substantial speedup of the solution of verification problem;
3) despite the fact that the implication method is simpler than
that of implication with condition coding and gives shorter
CNFs, it has smaller speed.
4) simulation based verification methods have 60 times
greater speed on average than SAT based methods
solving the same task.

REFERENCES
[1] A. Wiemann, Standardized functional Verification,
Springer, San Carlos, CA USA, 2008.
[2] A. Kuehlmann, A.J. Cornelis van Eijk, "Combinational
and Sequential Equivalence Checking", in: Logic synthesis
and Verification (Ed. S. Hassoun, T. Sasao, R.K. Brayton),
Kluwer, pp. 343–372, 2002.
[3] W.K. Lam, Hardware Design Verification: Simulation
and Formal Method-Based Approaches, New York: Prentice
Hall, 2005.
[4] L. Li, M.A. Thornton, and S.A. Szygenda, "Integrated
Design Validation: Combining Simulation and Formal
Verification for Digital Integrated Circuits", J. Systemics,
Cybernetics and Informatics, pp. 22–30, vol. 4, no. 2, 2006.
[5] W. Kunz, J. Marques-Silva, and S. Malik, "SAT and
ATPG: Algorithms for Boolean Decision Problems", in:
Logic Synthesis and Verification (Ed. S. Hassoun, T. Sasao,
R.K. Brayton), Kluwer, pp. 309–341, 2002.
[6] Goldberg E., Novikov Y.: "BerkMin: A Fast and Robust
SAT-Solver", in: Design, Automation, and Test in Europe,
March 2002, pp. 142–149.
[7] The MiniSat Page / http://minisat.se/MiniSat.html.
[8] L. Cheremisinova, D. Novikov, "SAT-Based Approach
to Verification of Logical Descriptions with Functional
Indeterminacy", Proc. 8th Intern. Workchop on Boolean
problems, Freiberg (Sachsen, Germany), Sept. 18–19,
pp. 59–66, 2008.
[9] L. Cheremisinova, D. Novikov, "SAT-based Method of
Verification Using Logarithmic Encoding", Intern. book
series "Information science and computing", FOI ITHEA,
Bulgaria, pp. 107–114, No 15, 2009.
[10] L.D. Cheremisinova, D. Ya. Novikov, "Formal
Verification with Functional Indeterminacy on the Basis of
Satisfiability Testing of the Conjunctive Normal Form",
Automatic Control and Computer Sciences, Allerton Press,
Inc., pp. 1–10, Vol. 44, No. 1, 2010.
[11] D.Ya. Novikov, L.D. Cheremisinova, "Verification of
Functional Descriptions with Indeterminacy on the Base of
Paraphase Presentation of Boolean Functions", Informatika,
pp. 54–62, no. 3, 2010 (in Russian).
[12] L. Cheremisinova, D. Novikov, "SAT-Based
Implicative Method of Implementation Checking for
Incompletely Specified Boolean Functions", Proc. 9th
Intern. Workchop on Boolean problems, Freiberg (Sachsen,
Germany), Sept. 16–17, pp. 97–102, 2010.
[13] L.D. Cheremisinova, D.Ya. Novikov, "Analysis of the
implementability of descriptions with functional
indeterminacy based on the verification of conjunctive
normal form satisfiability", Automatic Control and
Computer Sciences, Allerton Press, Inc., pp. 206–217,
vol. 45, no. 4, 2011.

