
Use-Flow Diversity and Toolset for Test and Repair of
Embedded Memory

Aram Khzarjyan
Synopsys

Yerevan, Armenia
e-mail: aramkh@synopsys.com

ABSTRACT
The development of a modern System-on-Chip (SoC)
requires usage of embedded IP blocks from different
vendors. The embedded memory, the IP block widely used
in SoC, usually occupies an essential die area. Meanwhile, in
difference to other SoC components embedded memories are
more defect-prone.
STAR Memory System (SMS) is an infrastructural IP
solution for built-in test and repair engines of embedded
memories. It is widely adopted now by a variety of
customers which development flows essentially differ from
each other.
To cover the diversity of requests for user maintenance
implying from difference in development flows we suggest a
new approach basing on a library of SMS standard use flows
implemented in a form of templates and a special toolset for
their modification and verification . The implemented library
of templates assists to design new flows quickly through
retrieving and customizing specific examples. User can
extend the library via insertion of new templates. A formal
verification approach used already for business processes is
successfully applied to the built library. The application is
illustrated on some use flow examples.

Keywords
SMS, use flow, formal verification, SoC, template library

1. INTRODUCTION
Each new semiconductor technology node provides further
miniaturization and higher performance. On the other hand,
the growth in demand for System-on-Chips (SoCs)
stimulates better, faster, smaller chips. The creation of such
SoCs necessitates usage of several embedded IP blocks from
different vendors.
Embedded memories IPs become the major component of
SoC that will occupy more than 94% SoC area in the year
2014 [1]. In the aspect of manufacturing yield, embedded
memories have more influence than other SoC components.
Memory with repair ability will improve the SoC yield [2].
Anyway, memory cannot test and repair itself. Build in test
and repair one of the solutions which can perform at
speed testing, offers vertical testability and high
diagnostic resolution. In general, SoC obtains the BIST that
is used to perform only testing. BIRA and BISR engine
components are necessary for performing repair of
embedded memories. BIRA allocates redundancy based
on detected defects of embedded memories [2], while
BISR is used to reconfigure memories for further repair
[3]. In the considered example BIST, BIRA and BISR are
realized as a processor, called Memory Test and Repair
Processor (MTRP).
STAR Memory System (SMS) is one of well-known MTRP
solution [4] which is a complete set of infrastructural IP
compilers and supporting software tools. Users are usually
using different IP blocks with a wide range of SMS
components to build their SMS use flows. It means the user
has to learn all SMS components taking into account all
specific details of their. As a result, the use flow design can
become time consuming and an error prone process. One of

use flow design optimization possible ways is the
encapsulation of its complexity by providing a standard Use
Flow Template Library (UFTL) and toolset of SMS usage.
The paper presents an approach of UFTL construction.
Suggested UFTL templates are well-known usage flows of
SMS. Five basic use flow templates, forming basic units of
more complex use flow templates, are defined per each basic
SMS tool. An approach of UFTL formal verification is
suggested to verify the correctness of use flow. The
illustration of formal verification approach application is
provided on one of UFTL templates. The modification of the
mentioned flow is a user-driven case. The formal verification
has been applied to the flow to check the correctness of the
modified use flow template.

2. STAR MEMORY SYSTEM
SMS allows usage of MTRP for a group of embedded

memories. The design of MTRP, that is supposed to support
different type embedded memory interfaces, is a complex
task. To simplify this task, each embedded memory is placed
into an appropriate wrapper which has a standard interface to
connect with MTRP [4]. Embedded memories can be
grouped by different parameters, such as type, power
domain, clock domain, placement location, etc. To manage
all MTRPs, included in SoC, they are connected to one
network, called Test Network (TN). Besides MTRPs, TN
also contains Non-Volatile Storage (NVS) and Central Test
Processor (CTP) [4]. The main role in TN lays on the CTP
that has dual-purpose functionality (manufacturing and
common usage). During the manufacturing phase, CTP runs
MTRPs, collects repair information, compresses and saves it
into the NVS. In the real life, CTP repairs embedded
memories when power is on [4].

Each component in TN can be adopted for different SoC
designs. Manual customization is a hard work. Instead of this
each component can be generated by special compilers,
called Template Based RTL Compiler. RTL compilers form
hierarchical infrastructure and have a great role in the TN
generating during SoC design. TN designing, inserting it into
SoC and testing is a complex task, which requires RTL
Compiler hierarchy and software tool infrastructures. Each of
them has its own environment, interface and parameter set.
For entire infrastructure its organization complexity and
parallelism grows exponentially. The solution is an
automation of use flows of TN Design and Verification
Process (DVP).

3. ENGINEERING USE FLOWS
SMS Use flow is usually defined as a common design flow
which can be implemented through performing the following
five steps:
•Preparation is assigned to support different IPs with SMS
interface.
•Generation is assigned to configure and create SMS
components with IP blocks based on SoC design
requirements.
•Insertion is assigned to integrate SMS components into
SoC design and to connect signals between different
hierarchies of TN blocks.

•Design Verification is assigned to check the correctness of
SoC functionality, completeness of connections between IPs
and test capability of IPs.
•Post Manufacturing verification is assigned to identify SoC
die possible defects.
Each step can be performed manually using SMS family
tools and compilers. All tools and compilers support a wide
range of configuration options and workflows. Each SMS
usage flow manual customization has many disadvantages
such as routine repeating similar operations, extra time
consuming, requirement for verifications per each change,
etc. The automation of the mentioned process is one of the
possible ways to avoid extra work and to save time and
efforts.
The corresponding steps are documented, verified and
suggested as recommended flows of SMS usage. A general
reference flow to combine the mentioned steps for end to
end usage of SMS package is suggested as well. The analysis
of various users use flows has identified some standard use
flows of SMS usage. These use flows are the customization
of SMS usage flow templates that are similar to well-known
ITIL templates [5-7]. Similarly, SMS use flow templates can
form a template library which can be provided to ease the
users’ work. A repository of process templates assists to
design new processes more quickly allowing them to retrieve
and customize specific examples. User can also extend the
library through insertion of new templates into the provided
library.
The analysis of various SMS use flows has identified
several features listed below:

• Parallel execution branches are available within
one use flow (parallel generation of wrappers,
MTRPs, etc.).

• Synchronization points can be required for a use
flow (TN generation requires successful generation
of all MTRPs, etc.)

• Single execution can be forked by several parallel
branches(several post-manufacturing verifications)

• Each node is a function with the corresponding
input and output variables

• Use flow contains also a data flow.
The provided features of SMS use flows are similar to the
workflow processes features. That is why IBM's MQSeries
Workflow model has been selected as a formal model of
defining SMS use flows [8]. The main model components are
activities and connectors. The activities are associated with a
context being defined as data passing to an activity. It is
called an input container. An activity also returns data called
an output container. Some output container elements of an
activity can be passed to the input container elements of other
activities or to the external memory. All data elements are
collected in the set V. Control and data connectors provide
connections between the activities. A control connector has
an associated Boolean predicate called a transition condition.
A directed graph based on sets of activities and control
connectors is called a control flow of a workflow process.
Full details can be found in [9, 10].

4. USE FLOW TEMPLATE LIBRARY
Taking into account the specifics of each recommended

and customer-driven use flows, the paper presents an
approach of SMS Use Flow Template library with the
possibility to modify and extend the existing ones by the
usage of provided UFTL supporting toolset. Any formal
verification algorithm of workflow processes can be selected
as a verification algorithm. Assertions have to be defined to
check the correctness of input data and the correctness of
execution per use flow.

There are five basic use flows used as a basis for any use
flow template construction: preparation, generation,
insertion, design and post manufacturing verification.

The preparation of different IPs to support SMS standard
interface can be performed by interface preparation tool
whose template is presented in Figure 1.

Figure 1. Prepation flow of SMS interface
The generation of SMS components can be performed by

generation tool whose template is presented in Figure 2.

Figure 2. Generation flow of SMS components
The insertion of SMS components into design can be

performed by insertion tool whose template is presented in
Figure 3. The design verification of SMS functionality and
completeness can be performed by verification tool whose
template is presented in Figure 4. The post manufacturing
verification generates and applies test patterns on die and
processes log data files by using appropriate tool whose
template is presented in Figure 5.

The mentioned steps can be combined depending on
customer requirements. Each of them can be used as a
separate use flow as well as can be a part of general use flow.
The recommended flow of SMS complete solution use flow
is a combination of all steps within a use flow illustrated in
Figure 6.

I1
Base

LRow

I2

I3

I4I5

LRow

CRow

CRow

SMem

SMem=exists
SMem=new

CRow

CMem, LMem

CGem

LGroup

CRow≠∅

I6

CRow=∅

LGroup

Sgroup, SRule

I7

LMem

CMem

I8

CMem

SMem, CMem

I9

CMem

SWrapper, LWrapper

I13

I10

LGroup

CGroup

I11
CGroup, LWrapper

SProcessor, LProcessor

I12

I14

LProcessor, LGroup

SServer

SRule=Fail
SRule=Pass

CMem=∅

CMem≠∅

CGroup=∅

CGroup≠∅

SEnd

I1. Read DB
I2. Select row
I3. Check memory
I4. Add memory
I5. Add group
I6. Check rule
I7. Select memory
I8. Create memory
I9. Create wrapper
I10. Select group
I11. Create processor
I12. Create Server
I13. Error
I14. End

M9

M8

M1
Mspecifications, Mems

MSpecifications

M2

M1. Read Memory information
M2. Create project
M3. Memory general parameters
M4. Memory port details
M5. Memory Address
M6. Memory Scramble information
M7. Configuration parameters
M8. Generate TCL files
M9. Create Configuration files
M10. Generate views
M11. Import views
M12. Generate virtual memory
M13. Verify virtual with real memory
M14. Error
M15. End

M3

M4
MSpecifications

MSpecifications, GParams

MSpecifications, LPorts

M5
MSpecifications

MSpecifications, MAddr

M6
MSpecifications

MSpecifications, MScramb

M7
Mspecifications, Gparams, LPorts, Maddr, MScramb

MParams

Mems, MParams

MCfg

M10
MCfg

Masises

M11
Masises

Mcompout, SImport

M12
Mcompout

Mcompout, SGen

M14

M15

SEnd

M13
Mcompout

MLogs

M14
MLogs

SSim

SSim=fail
SSim=pass

SImport=pass
SImport=fail

SGen=pass

SGen=pass

Mspecifications, Mems

SEnd

Figure 3. Insertion flow of SMS integration into SoC

Figure 4. Verification flow of SMS functionality

Figure 6. General flow of SMS use

Note: The suggested flow is a recommended flow only. User
can modify it adding new activities or deleting the existing
ones. Variations of the suggested compete use flow make 32
(5 steps, each step has 2 statuses – exists, removed).

5. FORMAL VERIFICATION
ALGORITHM

 The formal verification requires knowledge about the
underlying workflow process (internal structure of tasks,
data flow, etc.). The formal verification has to take into
account not only peculiarities of process structures, but also
data dependencies and, particularly, the data flow graph of a
given process [11, 12, 13]. Two assertions have to be
specified for the process. First, the process input assertion,
called precondition, has to be satisfied prior to the process
execution. Second, the process output assertion, called
postcondition, has to be checked at the end of each process
execution. The process is considered to be correct if the
value of postcondition is "true" for all possible executions.
This paper is using an extension of the acyclic process
verification algorithm [11] for verification of cyclic
workflow processes. It is based on the idea of reducing the
cyclic workflow process to the acyclic one, and then
applying the formal verification approach of acyclic
processes. The algorithm of the described approach,
suggested for the verification of cyclic business processes, is
presented in details in [9].
Figure 2 is presenting the generation use flow template that
is the most useful by users. For the verification of the given
process, precondition and postcondition should be specified
for the process [9, 11]. The specific conditions are created
based on the needs of verification against definite aspects of
process behavior. Generation flow cannot be executed
without DB. Precondition has to be specified to check that
DB information is applicable. It means that I1 activity input
variables have to be defined.
PreC = i(I1).Base ≠ ⊥,
where ⊥ denotes the unknown value of the variable.
Generation process has to be finalized in case of either
successful generation or error. The TRUE value of I13
activity Serror output variable means that the process has a
generation error in some step. The PASS value of I14 activity
Sserver output variable means that all components are
generated successfully. The postcondition has to check
overall behavior of the process for both cases.
PostC = (Serror = TRUE OR Sserver = PASS) AND Send =
TRUE
The application of formal verification algorithm on the
described process will identify the presence of cycles in it.
The detailed analysis of cycles will determine that process
cycles are intervals. The first step of algorithm will reduce
the cyclic graph to the acyclic one [12]. It will initially
construct the set of first order intervals - SC={<I2, I3, I4,
I5>, <I7, I8, I9>, <I10, I11>. The next step is an
replacement of intervals by the corresponding
equivalent activities <I2’, I4’, I5’> [9]. Exit transitions of
new activities have to contain branching information the
corresponding cycle that is interpreted in terms of branching
state registers. They are cycle invariants. For instance, I2’
activity has a transition to I3’. Its transition condition is
formulated from transition condition of I2 to I6 with
addition of branching register BrSr. BrSr = 1 is presenting
execution path <I1, I2, i6,…> and BrSr = 2 is presenting
execution path <I1, I2, I3,…>. Transition conditions of
other new activities are constructed similarly. Reduction
of the mentioned intervals by equivalent activities will
result in a new process (Figure 7). Second phase analysis of
the graph will determine that it is acyclic. The acyclic
process verification algorithm [11] has

B2

B3

B1

Compout, Design

B4

B5

B6

B7

B9

B10

B11

B17

B18

B13

B14

B15

B16

Compout, Design, Paths, Connections, Maps

Compout, Design

Compout, Design

Compout, Design

Compout, Design

Compout

Compout

Maps

Maps

Connections

Connections

Compout

Maps

Connections

SRead

SRead=Pass
SRead=fail B8

Paths

Paths, LSMS

B12

Paths

B1. Create Work Space
B2. Add SoC/SubChip
B3. Read SoC/SubChip
B4. Add Wrapper
B5. Add SMS
B6. Map Wrapper
B7. Connect SMS Ports
B8. Path SMS
B9. Add Server
B10. Map SMS
B11. Connect Server Ports
B12. Path Server
B13. Insert Wrapper
B14. Insert SMS
B15. Insert Server
B16. Write SoC/Subchip
B17. Error
B18. End

LSMS≠∅

LSMS=∅

V1

Compout, CPF, UDS, Location

V2

V3

V6

V5

V12

V7

V8

V9

V10

V11

V13

YA DB, Location

YA DB, Location

YA DB, Location

YA DB, Location

RLogs

V4

RLogs

RLogs, AStatus

RLogs

RLogs, AStatus

RLogs

RLogs, AStatus

RLogs

RLogs, AStatus

RLogs

AStatus

AStatus=Fail

AStatus=Fail

AStatus=Fail

AStatus=Fail

CStatus=Fail

AStatus=Pass

AStatus=Pass

AStatus=Pass

AStatus=Pass

YA DB, Location

YA DB, Location

Location

Location

Location, CStatus

Location

CStatus=Pass

AStatus=Fail

SEnd

V1. Read project
V2. Create test patterns
V3. Create test benches
V4. Create simulation scripts
V5. Check outputs
V6. Run simulation scripts
V7. Analyze Status pattern log
V8. Analyze ID pattern log
V9. Analyze BIST pattern log
V10. Analyze BIST Fail pattern log
V11. Analyze Repair Verification pattern log
V12. Error
V13. End

Y1

YA DB

Y2

Y3

Y6

Y5

Y7

Y8

Y9 Y11

Y12

YA DB

YA DB

YA DB, Patterns

YA DB, Patterns

DATs

Y4

YA DB, DATs

YA DB, DATs

YA DB, DATs

DATs, TAnalyze

DATs

BMap

DATs

FClass

TAnalyze=bfm

YA DB, Patterns

YA DB, Patterns

Patterns

Patterns

Logs

Logs

SEnd

Y1. Read YA DB
Y2. Create manufacturing patterns
Y3. Generate WGL/STIL patterns
Y4. Convert WGL/STIL to ATE patterns
Y5. Run ATE test patterns
Y6. Convert ATE Logs to DAT format
Y7. Read DAT files
Y8. Analyze DAT
Y9. Fail Bit Map
Y10. Coordinat identification
Y11. Falut classification
Y12. End

Y10

DATs

Pcoords

TAnalyze=fci

TAnalyze=pc

G1
M

G2

G1. Prepare IP Interface
G2. Generate SMS components
G3. Insert SMS to design by Builder
G4. Verify design
G5. Synthesis, Back End and
die manufacturing by customer
G6. Manufacturing test
G7. Error
G8. End

G3

G4

G5

G6

G8

G7

M, SG1

M

C, SG2

C, D

D, SG3

D, C

Y, SG4

Y

SG1=fail

Figure 5. Post manufacturing flow of verification
SG2=fail

SG3=fail

SG4=fail

SG1=pass

SG2=pass

SG3=pass

SG4=pass
SEnd

to be applied to the reduced process. After the execution of
the verification algorithm and after checking the correctness
condition, we get that the process is correct.

Figure 7. Reduced process
Some of the presented activities can be modified by the
user. They are I4’, I5’, I6’, I8’ activities.

To improve the overall quality of this process Analyze
and Notify additional tasks are added to the process Figure 8
for one of our customers. This activity analyzes if everything
execution of a process. In case of an abnormally executed
process, the activity Notify would notify about it. In addition,
the postcondition has to check the state variables of analysis
activity to be sure that analysis procedure passed
successfully.

Figure 8. Modified section of the process
New postcondition:

PostC = (Serror = TRUE OR Sserver = PASS) AND
Sanalyzed=TRUE AND Spassed=TRUE AND Send = TRUE

As a result of applying the similar steps of the process
transformation and verification, the condition of incorrect
processes would be satisfied [11]. The control connector
between activities Notify and End has to be removed to
correct the modified template logic. The postcondition has to
be also changed to:

PostC = (Serror = TRUE OR Sserver = TRUE)
AND Sanalyzed =TRUE AND ((Spassed =TRUE

AND Send = TRUE) OR (Spassed =FALSE AND Snotify =
TRUE)).

Applying the algorithm to the corrected process will
result in the satisfaction of the correct process condition
[10].

6. CONCLUSION
The use flow template library (UFTL) is suggested that
contains SMS standard use flows. Specific use flows can be
designed by customer through the modification of suggested
templates by the toolset. A formal verification algorithm of
workflow processes has been suggested to verify the
correctness of customers’ use flows after the modification.
The application of the presented approach is illustrated on
the SMS generation use flow template. It is also planned to
extend UFTL for other type of IP cores in the future.

7. REFERENCES
[1] The National Roadmap for Semiconductors, 2000.

 [2] Rei-Fu Huang; Chen Chao-Hsun; Wu Cheng-Wen; ,
"Economic Aspects of Memory Built-in Self-Repair ", 2007,
Volume: 24, Page(s): 164 - 172.

[3] Shoukourian, S.; Vardanian, V.; Zorian, Y., "An
approach for evaluation of redundancy analysis algorithms ",
Memory Technology, Design and Testing, IEEE
International Workshop on, 2001. , Page(s): 51 - 55 , 2001.

[4] Shoukourian, S.; Vardanian, V.; Zorian, Y., "SoC yield
optimization via an embedded-memory test and repair
infrastructure ", Design & Test of Computers, IEEE, 2004,
Volume: 21, Page(s): 200 - 207.

[5] IT Infrastructure Library, IT Service Management, Office
of Government Commerce, http://www.itil.co.uk/.

[6] , Microsoft Corporation “The Infrastructure Optimization
Journey”, 2008

[7] IBM, “Introducing the IBM Process Reference Model for
IT” , January 2007, Second Edition.

[8] IBM 2001. “IBM MQSeries Workflow: Concepts and
Architecture”, Version 3.3, GH12-6285-03, Product No.
5697-FM3, Mar. 2001, pp. iii-58.

[9] Kostanyan, A.; V. Matevosyan; S. Shoukourian; A.
Varosyan, “An Approach for Formal Verification of
Business Processes”. BIS'09, SpringSim'09, San Diego,
USA, 2009

[10] Leymann, F. and D. Roller. 2000. “Production
Workflow: Concepts and Techniques”, Prentice Hall Press,
2000

[11] Kostanyan, A., Varosyan, A., 2008, “Partial
Recognizing Algorithm for Verification of Workflow
Processes”, FUBUTEC'2008, Porto, Portugal, pp. 89-94

 [12] Allen,F.E., Cocke, J.”A program dataflow analysis
procedure”, Communications of the ACM, March 1976,
19(3):137-147.

[13] P. Ammann and J. Offutt. “Introduction to Software
Testing. Cambridge University Press”, 2008. ISBN 978-0-
521-88038-1

I1’
Base

Lrow

I2’
Lrow

BrSr, Crow, Lmem, Lgroup

I7’

I4’

Lmem, Lgroup

BrSm, Cmem, Lwrapper

I5’

Lgroup, Lwrapper

BrSg, Cgroup, Lprocessor

I6’

Lprocessor, Lgroup

I8’

I3’

Lgroup

Sgroup

Crow=∅ & (BrSr=1 V BrSr=2)

Srule=Pass

Cmem=∅ & (BrSm=1 V BrSm=2)

Srule=Fail

Cgroup=∅ & (BrSg=1 V BrSg=2)

Sserever

Serror

Send

I1'. Read DB
I2'. Form group
I3'. Check rule
I4'. Form mem wraper
I5'. Form proc
I6'. Create server
I7'. Error
I8'. End

I7’I6’

Lprocessor, Lgroup

Analyze

Sserever
Serror

Sanalyzed, Spassed

I8’
Send

Notify
Snotify

Spassed=False

Spassed=True

