ONE METHOD FOR CONSTRUCTING IRREDUCIBLE POLYNOMIALS OVER F_q OF ODD CHARACTERISTICS

Knarik Kyuregyan

Institute for Informatics and Automation Problems

Yerevan, Armenia

ABSTRACT

In this paper a new method for construction of irreducible polynomial over finite fields of odd $p = 2^m + 1$ characteristics is presented, *m* is a natural number.

Keywords: Irreducible polynomial, Minimal polynomial, Odd characteristic, Galois field

1. INTRODUCTION

The problem of presenting a fast, effective algorithm for constructing irreducible polynomials over the finite field is one of the challenging and important problems in computer algebra, coding theory, cryptography and theory of finite fields.

Let F_q be the Galois field of order $q = p^s$, where $p = 2^m + 1$ is an odd prime, *s* and *m* are natural numbers. The aim of this paper is to present a new method for constructing irreducible polynomials over F_q . Of more relevance to our study are the Corollary 3.6[2] and the Theorem (Cohen) 3.7 in [2], where it was established under what conditions F(x) = $g^n(x)P(f(x)/g(x))$ is irreducible.

We formulate the result as Theorem 2.

2. CONSTRUCTING IRREDUCIBLE POLYNOMIALS

We consider especially the case, when the characteristic of Galois field is 3.

Theorem 1.Let $g^{(0)}(x) = \sum_{u=0}^{n} a_u^{(0)} x^u \in F_q[x]$ be the minimal polynomial of an element $\alpha \in F_{q^n}$ over F_q , i. e. the irreducible polynomial of degree n > l, of order e_0 and with at least one coefficient $a_{2i+1}^{(0)} \neq 0$ $\left(0 \le i \le \left[\frac{n}{2}\right]\right)^{1}$. Then the polynomials of degree n

$$g^{(k)}(x) = (-1)^n \sum_{j=0}^n \sum_{u=0}^{2j} (-1)^u a_u^{(k-1)} a_{2j-u}^{(k-1)} x^j$$

where $a_u^{(k-1)}$ and $a_{2j-u}^{(k-1)}$ are coefficients of $g^{(k-1)}(x) = \sum_{u=0}^{n} a_u^{(k-1)} x^u$ minimal polynomial of an elemet $\alpha^{2^{k-1}}$, is the minimal polynomial of α^{2^k} and is of the order $e_k = \frac{e_{k-1}}{\gcd(e_{k-1},2)}$ for every $k \ge 1$.

Proof. According to Theorem 8[1] (Proposition 3[3]), if $g^{(0)}(x)$ is the minimal polynomial of α , then

$$g^{(1)}(x) = (-1)^n \sum_{j=0}^n \sum_{u=0}^{2j} (-1)^u a_u^{(0)} a_{2j-u}^{(0)} x^j$$
(1)

¹ [x] is the largest integer less than or equal to x and [x] is the smallest integer greater or equal to x.

polynomial is the minimal polynomial of α^2 , therefore, it is irreducible polynomial. Moreover the e_1 order of $g^{(1)}(x)$ is equal to $\frac{e_0}{\gcd(e_0,2)}$.

As the coefficients of $g^{(1)}(x)$ are from F_q , we can write

$$g^{(1)}(x) = \sum_{u=0}^{n} a_{u}^{(1)} x^{u} \in F_{q}[x].$$

Based on a view of (1), especially on the coefficient $(-1)^u a_u^{(0)} a_{2j-u}^{(0)}$ of x^j , if at least one coefficient $a_{2i+1}^{(0)} \neq 0$ of $g^{(0)}(x)$, then we will have at least one coefficient $a_{2i+1}^{(1)} \neq 0$ of $g^{(1)}(x)$. And so implying the proof of Theorem 8[1] on the polynomial $g^{(1)}(x)$, we can show that

$$g^{(2)}(x) = (-1)^n \sum_{j=0}^n \sum_{u=0}^{2j} (-1)^u a_u^{(1)} a_{2j-u}^{(1)} x^j$$

is the minimal polynomial of α^4 and of order $e_2 = \frac{e_1}{\gcd(e_1,2)}$.

With the same logic are constructed the minimal polynomials of α^{2^k} for every $k \ge 3$.

Theorem 2. Let $g^{(0)}(x) = \sum_{u=0}^{n} a_u^{(0)} x^u \in F_q[x]$ be the minimal polynomial of an element $\alpha \in F_{q^n}$, $Tr_{q|p}(a_1^{(1)}/a_0^{(1)}) \neq 0$, where $a_1^{(1)}$ and $a_0^{(1)}$ are coefficients of the minimal $g^{(1)}(x)$ polynomial of an element $\alpha^2 \in F_{q^n}$. Then

$$F(x) = x^n g^{(1)} \left(\frac{x^p - 1}{x} \right)$$

polynomial is irreducible.

Proof. Using the irreducibility of polynomial $g^{(1)}(x)$ over F_q , we have the following relation over the field F_{q^n}

$$g^{(1)}(x) = \prod_{u=0}^{n-1} (x - \alpha^{2q^u}).$$

In the last relation substituting $\frac{x^{p-1}}{x}$ for *x*, we have

$$g^{(1)}\left(\frac{x^p-1}{x}\right) = \prod_{u=0}^{n-1} \left(\frac{x^p-1}{x} - \alpha^{2q^u}\right).$$
 (2)

Multiplying the both sides of (2) by x^n , we have

$$x^{n}g^{(1)}\left(\frac{x^{p}-1}{x}\right) = x^{n}\prod_{u=0}^{n-1}\left(\frac{x^{p}-1}{x}-\alpha^{2q^{u}}\right),$$

and then making some trivial operations in the right-hand side, we obtain

$$F(x) = x^{n}g^{(1)}\left(\frac{x^{p}-1}{x}\right)$$
$$= \prod_{u=0}^{n-1} (x^{p} - \alpha^{2q^{u}}x - 1).$$

According to Theorem (Cohen) 3.7[2], F(x) is irreducible over F_q if and only if $x^p - \alpha^2 x - 1$ is irreducible over F_{q^n} .

From the theorem requirement we have $Tr_{q|p}\left(a_1^{(1)}/a_0^{(1)}\right) \neq 0$, hence

$$Tr_{q^{n}|p}(1/\alpha^{p}) = \left(Tr_{q^{n}|p}(1/\alpha)\right)^{p}$$

= $\left(Tr_{q|p}\left(Tr_{q^{n}|q}(1/\alpha)\right)\right)^{p}$
= $\left(Tr_{q|p}\left(a_{1}^{(1)}/a_{0}^{(1)}\right)\right)^{p} \neq 0.$

Thus, due to Corollary 3.6[2], $x^p - \alpha^2 x - 1$ is irreducible over F_{q^n} , hence F(x) is irreducible. With the same analogy we can construct

$$F(x) = x^n g^{(1)} \left(\frac{x^p - 1}{x} \right)$$

irreducible polynomial over F_q for any prime $p = 2^m + 1$ and $q = p^s$, where *s* and *m* are natural numbers and $g^{(1)}(x)$ is the minimal polynomial of α^{2^m+1} .

3. CONCLUSION

In this paper we are constructing

$$F(x) = x^n g^{(1)} \left(\frac{x^p - 1}{x} \right)$$

irreducible polynomial over F_{3^s} , where $g^{(1)}(x)$ is the minimal polynomial of $\alpha^2 \in F_{q^n}$, but with the same analogy we can construct over $F_{(2^m+1)^s}$ field.

REFERENCES

- [1] M. K. Kyuregyan, Recurrent Methods for constructing irreducible polynomials over F_q of odd characteristics, Finite Fields Appli. 9 (2003) 39-58.
- [2] A. J. Menezes, I. F. Blake, X. Gao, R. C. Mullin, S. A. Vanstone, T Yaghoobian, Applications of Finite Fields, Kluwer Academic Publishers, Boston, Dordrecht, Lancaster, 1993.
- [3] M. K. Kyuregyan, Recurrent Methods for constructing irreducible polynomials over F_q of odd characteristics 11, Finite Fields Appli. 12 (2006) 357-378